Pixellated Planar Bolometer Imaging Arrays

E. Wollack, D. Chuss, H. Moseley

NASA/GSFC

Future Telescope Instrumentation Workshop, Green Bank, West Virginia – 09/05/06

Summary

- Pixellated imaging arrays Motivation
- Practical realizations and parameters
- Design considerations and limitations
- How to make thing black Materials, topologies and modeling absorbers
- Tracking the imaging properties interelement correlations and resolution

Continuum Science Drivers: Extended Source Mapping

- Star Formation Regions
 - Accretion / Debris Disks
 - Cold Protostellar Gas
 - Dust Emission
- Planetary, Kuiper Belt, and Comets
- Universe at High Red Shift
 - Continuum Surveys / Polarimetery
 - Cosmology
 - Galaxy Clustering
 - SZ / Cosmic Microwave Background
 - Photometric Survey Support

Single-Mode Detector: Matched to Point Source

P = S A

 $P_n \approx m k_b T$

rge Area Detector: stributed Source

$$P = \frac{2k_bT}{\lambda^2} \int A \cdot d\Omega$$

In principle, a well implemented multimode array is able to more rapidly map an *extended image* while maintaining low noise, high intrinsic detector speed, angular resolution, and control over atmospheric noise...

Telescope Primary:

- Low Pass Spatial Filter

Re-imaging Optics:

- Beam Waveguide to Detector
- Filtering to Define Spectral Response
- Cold Baffling to Limit Sensor FOV

Cryostat and Supporting Electronics:

- Appropriate Environment for Sensor
- Cold Stage ~200 mK, ~10 μW load

Pixellated Array in Focal Plane:

- Image from Multiple Sensors Elements
- Temporal Response Defined by Sensor Electro-Thermal Time Constant

Pixellated Array: Implementations

Selected Array Parameters:

Instrument	ρ/ λ	Array Size /	Back	Wavelength
		Detector Type	Termination	
ACT	0.50	32 x 32	Absorber	2.0mm
	0.75	TES		1.3mm
	0.88			1.1mm
GISMO	1.00	8 x 16	Short	2.0mm
		TES		
GBT	1.00	8 x 8	Short	3.0mm
		TES		
SCUBA 2	2.52	64 x 64 / TES	Short	0.45mm
	1.34	32 x 32 / TES		0.85mm
SHARC II	2.86	12 x 32	Short	0.35mm
	2.22	Semiconductor		0.45mm
	1.18			0.85mm
HAWC	3.3-to-20	12 x 32	Absorber	0.05-to-0.3mm
		Semiconductor		

Pixellated Arrays: Practical Limits

- Electromagnetic Considerations:
 - Lagrange / Helmholtz Invariant:
 - Uncertainty Principle:
 - Rayleigh Resolution Pixel Angular Acceptance
 - Diffraction Instrumental Polarization and Coupling Efficiency

 $A_{eff} \Omega_b / \lambda^2 = N_{modes}$

 $\Lambda x \Lambda k > \frac{1}{2}$

- Hanbury-Brown-Twiss Inherent Image Correlations
- Coupling: Convert incident fields from plane-wave to sensor mode set with high absorption efficiency without loss of spatial information...
- Information Theoretic Considerations:
 - Nyquist: Telescope is Spatial/Temporal Low-Pass Filter
 - Shannon: S = det[log(1+G_{ij} N⁻¹ G_{ij})] need to understand and characterize correlations

Objective: Maximize information extraction from image by senor...

Senor Array: Design Considerations

- Relatively Fast Optics...
 - Absorption Efficiency: Polarization Dependent on Incidence Angle...
 - Mutual Coupling: Degraded Noise / Angular Resolution...
 - Reflections: Ghosting in Optics...
 - Band Pass: Function of radiation incident angle and collimation... (e.g., $\Delta v_{eff} \sim v_o / 2 (2 n_{eff} f/)^2 ...)$
- Inter-Element Correlations a Function of Detector Pitch, Absorber Geometry, and Wavelength...
- Fabrication...
 - Control / Limit Interlayer Spacing and Geometry \rightarrow Polarization
 - Multimode or Appropriately Symmetrized Absorber Design
 - Mechanical Backshort Spacing / Geometry \rightarrow Coupling
 - Bolometric Absorber Process and Validation \rightarrow Device Stability

Pixellated Array Element:

• Lossy coating converts incident photons to phonon in absorber membrane...

• Thermal sensor will have finite area with a surface impedance differing from that of the absorber, electrically long leads for electrical read out and bias...

- Other Influences:
 - Gaps for Thermal Conductance
 - Minimal Heat Capacity...
 - Calibration/Bias Heater
 - Finite Array Size / Edge Effects
 - etc...

The effects of these design parameters on the absorptance can be studied for plane wave illumination via 3D electromagnet simulation for each polarization (e.g., Time-Domain TLM or Finite Element methods) by imposing periodic boundary conditions...

Absorber: Design Considerations

- Compatibility with other sensor processing...
- Predictable performance based upon DC and Optical Witnesses
- Decouple Optical and Thermal Design Constraints
 - Use Electrically Thin Silicon Substrate...
 - Terminate Transmitted Power Cold and Limit FOV...
 - Maximize Sensor Absorption Efficiency
- Circuit Topology and Sensitivity: FSS, Back Termination, etc...

Coating Composition: Conduction	Bi Semi-Metal	Cr/Au Disordered	Pd/Au Disordered	Ti/Au Disordered	Silicon Implant Degenerate
Mechanism:		Metal Alloy	Metal Alloy	Metal Alloy	Semiconductor
Surface Reactance?		++	++	++	++
Electrical Time Constant?	-	++	++	++	+
Heat Capacity?	++	+ (magnetic)	 (large elec. γ)	++	++
Long Term Stability?	+	-	+	+	++

Absorber: Finite Scattering Time

HAWC TiAu_Si Witness: @ 300K

Drude TLM: T_a=5K e_r =11.5, t~82um R_{sq}~110 Ω /sq tau~0fs

Wollack et al., 2006 - Future GBT Instrumentation Workshop

Frequency Independent Absorber: Thin Film Resistor Metallization

• To approximate ideal resistor, desire ohmic thin film with thickness << penetration depth over band of interest...

• Semi-metal, disorder alloy, and degenerately doped implant can produced the desired impedance levels at long wavelengths...

Absorbers: FSS and PSS Elements

Infinite Square Loop Array and Equivalent Circuit Representation...

- Theoretical Investigation of Frequency and Polarization Sensitivity Surface Configurations...
 - Geometry
 - Absorption/Emission Efficiency
 - Bandwidth
 - Substrate Dielectric Loading
 - Inter-pixel Correlation when Elements are used as Focal Plane Array Detector Absorbers
 - Tolerance / Sensitivity Study
 - Polarization Purity
- Derivation and Finite Element Validation of Computational Efficient Lumped Circuit Element Models...

Absorbers: FSS and PSS Elements

Pixel Coupling: Beam Overlap

Pixel Coupling: Beam Overlap

Equivalently, treat array elements as quasioptical power splitter and consider at beam overlap at infinity...

Pixel Coupling: Mutual Impedance

Consider impedance matrix for array of elements. Terminate all elements in array terminated except pair – currents on one pixel couple to other...

Multimode Optical Response:

Polarization Response...

Observation: If detectors response is different for orthogonal polarizations, uncertainty introduced in calibration / measurement of photometric flux. Effect is estimated to be several percent level a millimeter wavelengths...

Solution: 1) Ensure that the polarized response of the detector is negligible, 2) Keep track of the polarization, 3) Other...

Solution	Loss	Reflections	Bandwidth	Fabrication
Symmetrize absorber (1-side)	+	+	-	+
Diagonal mesh (2-sides)	+	+	+	
Single polarization only			+	+
Absorb wave after absorber			+	
Polarizer in front of array			+	+
Rotating QWP	-	-	+	+
Rotating HWP	-	-		+
Variable Delay Modulator	-	-	+	+

