

Science Drivers for Big Data Joseph Lazio SKA Program Development Office & Jet Propulsion Laboratory, California Institute of Technology

© 2010 California Institute of Technology. Government sponsorship acknowledged.

Data Intensive Astronomy

- "There is nothing new under the Sun"
- Case studies
 - 1. Processing: Cosmology and imaging surveys
 - 2. Data volume: Fundamental physics from pulsar observations and pulsar surveys
 - 3. Data rates: Observing!
 - 4. Data visualization: Identifying interference
 - 5. Data curation: Astronomy for the future

Data Intensive Astronomy

Data Volumes

Iππαρχο∫ (Hipparcus) •ca. 135 BCE

• Stellar catalog with 850 entries

Computational Limitations

Harvard computers

- Production of stellar plates and spectra ("data rate") was increasing enormously
- Examined and classified telescope output
- Forerunners of human mathematical computers
 Evaluting the Universe with the world's largest radio tolescent

Key Science for the SKA (a.k.a. m- and cm- λ astronomy)

Emerging from the Dark Ages & the Epoch of Reionization

Strong-field Tests of Gravity with Pulsars and Black Holes

Galaxy Evolution, Cosmology, & Dark Energy

The Cradle of Life & Astrobiology

Origin & Evolution of Cosmic Magnetism

SKA Pathfinding

- SKA is ultimate goal, though long-term program
- Precursors and many pathfinders in existence or under construction
- Data challenges before SKA comes on-line
- Scalability could be an issue

Case Study 1: Cosmology

- Origin and Fate of the Universe
- Era of "precision cosmology" ... or precision ignorance
- Need to sample a substantial volume of the Universe

Composition of the Universe

Cosmology and Sky Surveys

- D distance; Ω solid angle
- Surveying to larger D is difficult → need larger telescopes
 "square kilometre" of SKA
- Surveying larger sky areas Ω just requires more observing time

Sloan Digital Sky Survey volume

Cosmology and Sky Surveys

- Image the sky, locating galaxies
 Analysis of locations compared with cosmological models to constrain parameters
- Two broad classes of surveys
 - Continuum: e.g., NVSS, FIRST, ASKAP/EMU, WSRT/APERTIF/WODAN
 - Spectroscopic: SDSS, Arecibo ALFALFA, ASKAP/WALLABY, SKA H I survey

Spectroscopic surveys locate in **3-D space!** very powerful

• Ultimate goal: spectroscopic survey of 1 billion galaxies

Imaging with Arrays

Fourier

 \leftrightarrow

Fourier transform plane

Image plane

Imaging Surveys

Requirements

- Many antennas in order to provide sensitivity and image quality large N_{antenna}
- Spectral resolution because of wide-field effects, line emission from galaxies, or both large N_{frequency}
- Long integrations in order to obtain adequate signal-to-noise ratio large N_{time}, e.g., 500 hr at 1 s sampling?
- $N_{data} \sim N_{antenna}^2 N_{frequency} N_{beams} N_{time}$

ASKAP	SKA Phase 1	SKA Phase 2
N _{antenna} = 30	N _{anntena} ~ 250	N _{antenna} ~ 1000
N _{beams} = 30	N _{beams} = 1	N _{beams} = 1?
N _{frequency} ~ 16k	N _{frequency} ~ 16k?	N _{frequency} ~ 16k?

Imaging Surveys II

ASKAP	SKA Phase 1	SKA Phase 2	
N _{antenna} = 30	N _{anntena} ~ 250	N _{antenna} ~ 1000	
$N_{beams} = 30$	N _{beams} = 1	N _{beams} = 1?	
N _{frequency} ~ 16k	N _{frequency} ~ 16k?	N _{frequency} ~ 16k?	
N _{time} ~ 1.8M			
$N_{data} \sim 8 \times 10^{14}$	$N_{data} \sim 2 \times 10^{15}$	$N_{data} \sim 3 \times 10^{16}$	
N _{OPS} ~ 8 × 10 ¹⁸	N _{OPS} ~ 2 × 10 ¹⁹	$N_{OPS} \sim 3 \times 10^{20}$	

- Imaging is more than "just" an FFT.
 Gridding, deconvolution, wide-field corrections, selfcalibration, ...
- Community estimates are 10⁴ to 10⁵ ops per visibility datum(!)

Energy Consumption

- Problem linked to moving data around chips
- See also D'Addario (SKA Memo #130)

Case Study 2: Fundamental Physics with Radio Pulsars

Arrival times of pulses from radio pulsars can be measured with phenomenal accuracy

- Better than 100 ns precision in best cases
- Enables high precision tests of fundamental physics
 - Theories of gravity, gravitational waves, nuclear equation of state
 - 1993 Nobel Prize in Physics
- Problem: Not all pulsars are equal!
- •Good "timers" < 10% of total population
- •Need to find many more!
- All-sky survey

Pulsar Surveys I

Requirements

- Large bandwidths because pulsars are faint
- Long integration times because pulsars are faint
- Rapid time sampling in order to resolve pulse profile
- Narrow frequency channelization in order to mitigate interstellar scattering
- For a "pixel" on the sky, accumulate data for a time Δt over a bandwidth Δv

Suppose $\Delta t = 20 \text{ min.}, \Delta v = 800 \text{ MHz}$

- Time sampling δt with frequency channelization δv For GBT GUPPI, $\delta t = 81.92 \ \mu s$, $\delta v = 24 \ \text{kHz}$
- ➢ 60 GB data sets per pixel …

Pulsar Surveys II

For GBT

- At 800 MHz, "pixel" ~ 16' = 0.3°
- About 350 kpixels in the sky
- 20 PB data set

For SKA

- At 800 MHz, "pixel" = 1.2'
- About 76 Mpixels in the sky
- 4.6 EB data set

Case Study 3: Observing!

- Gravitational wave studies via a pulsar timing array
 - Precise measurements of arrival times of pulsars can track changes in pulsar-Earth distance

- Interferometric imaging
 - H I observations or continuum
 - Galaxy evolution through cosmic time, cosmology, magnetic field studies,

Case 3a: Pulsar Timing

- Nyquist samping of a 1 GHz bandwidth = 2 Gsamples/s
- 4 polarizations
- 1-byte representation of data?
- 15 minutes per pulsar
- Weekly observations of 100 pulsars (for 5 to 10 years)
- = 3 PB/month

Case 3b: Imaging

- Nyquist samping of a 1 GHz bandwidth = 2 Gsamples/s
- 4 polarizations
- 1000-element array (499,500 visibilities)
- 1-byte representation of data?

• = 4 PB/s

Case 4: Interference Mitigation

- Most of the radio frequency (RF) spectrum is not reserved for use by radio astronomy In fact, very little is! ⁽³⁾
- Other passive users are fine
- Active users can be troublesome!
 GPS, microwave ovens, cell phones, car ignitions, electric fences, …

UARE KILOMETRE ARRAY

Interference Mitigation II

- Radio flux density measured in Janskys
 - $1 Jy = 10^{-26} W/m^2/Hz$
- 10 μ Jy = EVLA, GBT, ASKAP, MeerKAT, ... sensitivity
- 10 nJy = SKA aim
- 100 Jy ~ cell phone on Moon

Data Visualization

 $\mathbf{\uparrow}$

Time

- Data acquired from an array are at least 4-D
 - $-Visibility (= antenna_i \times antenna_i)$
 - -Frequency
 - -Time
 - -Polarization
 - -(Beams? for a multi-beam system)
- Best results still obtained by hand

Frequency ->

Case 5: Astronomy for the Future

- 100+ year light curves
- BL Lac
 - –Variable star #90 in constellation Lacertae?
 - -Active galactic nucleus?
- What will our "academic grandchildren" want to know?

3C 273 (Angione & Smith 1985)

> What will they be able to know?

Summary – Data-Intensive Astronomy

- Exciting science!
- Leads to exciting data challenges
 - Data volume (Exabyte)
 - Processing requirements (Exo-flop)
 - Data rates (PB/s)
 - Data visualization (HMI)
 - Long time scales (100 years?)
- Answers on Thursday

Pulsar Surveys III

Processing load