Next Generation Data Management: From LOFAR to the SKA

Innovations in Data-Intensive Astronomy May 5, 2011

Michael Wise ASTRON / LOFAR / UvA

Next Generation Data Management: From LOFAR to the SKA

Overview of LOFAR Science drivers and pipelines Data flow and bottlenecks Data products and access Modern archives

LOFAR Superterp June 2010

25

the second second

Low band antenna: 30 – 80 MHz 48/96 antennas per station

- 40 NL + 8 EU stations of dipoles
- Replace big dishes by many cheap dipoles
- No moving parts: electronic beam steering
- Flexible digital beam forming

LOFAR Antennas

High band tiles:120 – 240 MHz 96 tiles/station, 4x4 antennas/tile

Technology for SKA Low

Phased Array Detectors

Michael Wise

AST(RON

Michael Wise

AST(RON

Digital Beam-Forming

11

Innovations in Data-Intensive Astronomy

May 5, 2011

LOFAR Data Flow

- Station level processing *Amplification, digitization, filtering, beam-forming, transient ram buffers (TBB)*
 - Central processing *Delay compensation, correlation, calibration, celibration, science pipelines (BG/P, storage, offline cluster)*

Michael Wise

AST(RON

Central Processing

- BG/P Data reception, transpose, correlation, beam-forming, de-dispersion, 45 TFLOPS
 - Storage system Short term storage of data, ~2 PByte, ~100Gbps I/O
 - Offline cluster *Pipelines, data products, off-line analysis, ~20 TFLOPS*

Online Processing

Some numbers

- 2688 dipoles (LBA), 200 MHz sampling, 2 polarizations, 12 bit digitization
 ⇒ 13 Tbits/s ~ 1.6 TB/s ~ 138 PB/day
- 48 stations, 48 MHz total bandwidth, 8 independent beams (up to 100s)
- 1128 baselines, 242 sub-bands, 256 channels, 4 polarizations, 1 sec correlator dump-time ⇒ ~ 10 TB/hr ~ 240 TB/day ~ 0.1 EB/yr

Storage limits give a ~1 week processing window

LOFAR Science Drivers

Key Science Projects Epoch of Reionization Transients and Pulsars High Energy Cosmic Rays Surveys and the Distant Universe Cosmic Magnetism Solar Physics and Space Weather

⇒ International membership from countries all over world Contribute development and commissioning resources

The LOFAR Epoch of Reionization Key Science Project

Goal: Tracing the EoR in HI and possibly the late stages of the Dark Ages \Rightarrow 1.5 Pbytes and 10²¹-10²² FLOP to extract signal!

Science Pipelines

Standard Imaging

Known Pulsars

Transient Detection

VHECR

Dynamic Spectra

Innovations in Data-Intensive Astronomy

Standard Imaging Pipeline

Standard Imaging Pipeline

Michael Wise

AST(RON

24

LOFAR

Innovations in Data-Intensive Astronomy

May 5, 2011

Automated RFI Flagging

Standard Imaging Pipeline

Standard Imaging Pipeline

Next Generation Data Management

Michael Wise 27

Innovations in Data-Intensive Astronomy

Standard Imaging Pipeline

Standard Imaging Pipeline

29

3C 61.1 Wide-field imaging

HBA 115-185 MHz 8(x2)+ 4 stations 8 deg x 8 deg field 4 arcsec pixels ~5.18x10⁷ pixels 10 arcsec PSF

10 Jy peak 1 mJy noise

(courtesy S. Yatawatta)

Innovations in Data-Intensive Astronomy

Next Generation Data Management

Michael Wise 30

Innovations in Data-Intensive Astronomy _

May 5, 2011

Catalog Sizes and Data Volumes

ν	Confusion	Source	Number of sources	Integration time	Total number
	level	density	in beam	to reach confusion	of sources
					all sky
MHz	mJy	$\operatorname{arcmin}^{-2}$		hour	
(1)	(2)	(3)	(4)	(5)	(6)
15	4.745	0.2	2.7e + 05	48	1.3e+07
30	0.969	0.7	2.7e + 05	38	5.4e + 07
60	0.205	2.9	2.7e + 05	585	2.2e + 08
75	0.124	4.5	2.7e + 05	991	$3.4e{+}08$
120	0.043	11.6	2.7e + 05	23	8.6e + 08
150	0.026	18.1	2.7e + 05	55	1.3e+09
200	0.014	32.2	2.7e + 05	191	2.4e + 09
240	0.009	46.3	2.7e + 05	668	3.4e + 09

ν	Number of pixels	Amount of data	Amount of data
		continuum maps	spectral data cubes at full polarization
MHz		Gbyte	Tbyte
(1)	(2)	(3)	(4)
15	4.2e + 08	1	27
30	1.7e + 09	6	108
60	6.8e + 09	27	432
75	$1.1e{+}10$	42	675
120	$2.7e{+}10$	108	1729
150	$4.2e{+}10$	168	2702
200	$7.5e{+}10$	300	4803
240	$1.1e{+}11$	432	6917

The RXTE All-Sky Monitor Movie

02 / 23 / 1996

Radio Sky Monitor: Multiple station beams tile out a significant fraction of the sky and detect transient sources on timescales down to 1 second

Transient Detection Pipeline

Expansion on standard imaging mode Requirement for near real-time performance Detection, classification, and response Generate and receive event triggers (internal and VOEvents)

dsid

rerun

dstype

xtrsrc_id

image id

ds_id

zone

ra

decl

7

ra_err

decl_er

margin

beam pa

datapoints

I peak sum

xtrsrc_id

assoc_r

assoc_lr

assoc weight

I_peak_sq_sum

beam semima

beam_semimir

Transient Database Design

(courtesy B. Scheers)

Michael Wise 35

36

Transient Detection Pipeline

Sample extracted lightcurves Push computations to the DB!

Pulsar Surveys with LOFAR

Known Pulsar Pipeline

100+ Pulsars Detected with LOFAR

(courtesy: J. Hessels & Pulsars WG)

Innovations in Data-Intensive Astronomy

May 5, 2011

Beam-formed Data Rates

Mode	Description	Data Rate	FoV (sq. deg.)	Res. (deg.)	Sens. (norm.)
Incoherent (par. imaging)	Stations added without proper phase correction.	2-250 GB/hr	12.5	2	6.0
Tied-array	Stations added properly in phase.	Up to 23TB/hr	0.2	0.03	36.0
Single Station	For projects with high time, but lower sensitivity requirements.	2-250 GB/hr	12.5	2	1.0
Superstation	Interesting balance of sensitivity and FoV.	Up to 23TB/hr	9.0	0.2	12.0
Fly's Eye	Maximize total FoV for bright transient survey.	Up to 8TB/hr	450	2	1.0

Michael Wise

LOFAR Data Formats

Sky Cubes BF Data Products TBB Time Series Near-field Cubes Dynamic Spectra RM Cubes

Michael Wise 42

LOFAR HDF5 Sky Cubes

LOFAR HDF5 Beam-formed Data

May 5, 2011

Michael Wise

AST(RON

44

LOFAR Archive Estimates

Archived To Be Processed

LOFAR Central Processing

Michael Wise 47

LOFAR Archive Topology

Current Archive Capacity

	Online (disk)	Nearline (tape)	Used
SARA	300 TB	1 PB	250 TB
Jülich	90 TB	1 PB	10TB
Target	1+ PB	3+ PB	-

Target systems will become operational in about May 2011

	Cores
SARA (BigGrid)	2200
NIKHEF (BigGrid)	2200
RuG (BigGrid)	770
Jülich (JUROPA)	17500

These are shared compute clusters

<u>Summary</u>

- Hardware roll-out complete early 2012
 - Science pipelines under continuing development
- Heavy commissioning throughout 2011-2012
- Data volume and management is already an issue
- **Data management effects processing strategies**
- Requires trade-offs between quality and efficiency
 - Real-time science drivers require high performance
 - Pipelines produce a zoo of large and complex datasets
- Data management will drive archive content
- Archives must become processing centers

The End

