On the (Non)Evolution of HI "Disks" over Cosmic Time

J. XAVIER PROCHASKA

UCO/LICK OBSERVATORY

(IMPS: INTER[GALACTIC-STELLAR] MEDIUM PROGRAM OF STUDIES)

"The Swimming Pool Theory of Galaxy Formation"

A.M. WOLFE (UC SAN DIEGO)

- Goal: Discuss the global evolution of HI in galaxies across cosmic time
- Motivations
 - ▶ HI gas feeds star formation (via H₂)
 - Total HI content is a balance between SF, accretion, and 'feedback'
 - HI is a signpost for recent/current/future SF

HIPASS: Zwaan et al. 2005

 $)dN_{
m HI}$

ΗI

Galactic Σ_{HI} Profiles

- Analysis
 - De-projection by inclination
 - Average azimuthally
 - Plot
- Common characteristics
 - HI 'holes' at the center
 - Steep decline for R<R₂₅
 - Power-law (Metsel) beyond

HOLWERDA+ 2005

LAH+ 2007

• 21cm?

- Not with today's telescopes
- ▶ SKA (i.e. >2020)

LAH+ 2007

Mapping HI at z>0

- 21cm?
 - Not with today's telescopes
 - SKA (i.e. >2020)

LAH+ 2009

Mapping HI at z>0

SHAPIRO+ 2008

• 21cm?

- Not with today's telescopes
- ▶ SKA (i.e. >2020)
- Ha, Lya
 - Difficult observations
 - Primarily trace ionized H gas
 - But connected to atomic/molecular gas

Mapping HI at z>0

SHAPIRO+ 2008

• 21cm?

- Not with today's telescopes
- ▶ SKA (i.e. >2020)
- Ha, Lya
 - Difficult observations
 - Primarily trace ionized H gas
 - But connected to atomic/molecular gas
- HI?
 - Ly α absorption
 - via Quasars, GRBs, etc.

 $10^{21} \text{ cm}^{-2} = 8 M_{\text{Sun}} \text{ pc}^{-2}$

- $10^{21} \text{ cm}^{-2} = 8 \text{ M}_{\text{Sun}} \text{ pc}^{-2}$
- N_{HI} frequency distribution
 - Normalized to the survey path

$$\begin{split} \ell(X) &= \oint_{N_{\min}}^{\infty} f(N_{\mathrm{HI}}) \, d^{\ell(N)} = \int_{N_{\min}}^{\infty} f(N_{\mathrm{HI}}) \, dN_{\mathrm{HI}} \\ \ell(X) &= \int_{N_{\min}}^{N_{\min}} f(N_{\mathrm{HI}}) \, dN_{\mathrm{HI}} \\ \ell(X) &= \int_{N_{\min}}^{N_{\min}} f(N_{\mathrm{HI}}) \, dN_{\mathrm{HI}} \\ \ell(X) &= \int_{N_{\min}}^{N_{\min}} f(N_{\mathrm{HI}}) \, dN_{\mathrm{HI}} \\ \ell(X) &= \int_{N_{\min}}^{\infty} f(N_{HI}) \, dN_{\mathrm{HI}} \\ \ell(X) &= \int_{N_{\min}^{\infty} f(N_{\mathrm{HI}}) \, dN_{\mathrm{HI}} \\ \ell(X) &= \int_{N_{\max}^{\infty} f(N_{\mathrm{HI}}) \, dN_{\mathrm{HI}} \\ \ell(X) &= \int_{N_{\max}^{\infty} f(N_{\mathrm{HI})} \, dN_{\mathrm{HI}} \\ \ell(X) &= \int_{N_{\max}^{\infty} f(N_{\mathrm{HI})} \, dN_{\mathrm{HI}} \\ \ell(X) &= \int_{N_{\max}^{\infty} f(N_{\mathrm{HI})} \, dN_{\mathrm{HI}} \\ \ell(X) &= \int_{N_{\max}^{\infty} f(N_{\mathrm{HI}}) \, dN_{\mathrm{HI}} \\ \ell(X$$

 $10^{21} \text{ cm}^{-2} = 8 \text{ M}_{\text{Sun}} \text{ pc}^{-2}$

- N_{HI} frequency distribution
 - Normalized to the survey path
- Measure the N_{HI} distribution for
 - all galaxies in $\overset{\infty}{h}$ shell $\ell(X) = \int_{\ell(X)}^{\infty} f(N_{\mathrm{HI}}) d^{\ell}N_{\mathrm{HI}}^{\gamma} = \int_{\ell(X)}^{\infty} f(N_{\mathrm{HI}}) dN_{\mathrm{HI}}^{\gamma}$ Shell has width Az (e.g. 1Gpc)

 - Projected surface densities

$10^{21} \text{ cm}^{-2} = 8 \text{ M}_{\text{Sun}} \text{ pc}^{-2}$

 $\ell(X)$

- N_{HI} frequency distribution
 - Normalized to the survey path
- Measure the N_{HI} distribution for
 - all galaxies in $\overset{\infty}{P}$ shell $\ell(X) = \int_{\ell(X)}^{\infty} f(N_{\rm HI}) dN_{\rm HI} \int_{N_{\rm HI}}^{\infty} f(N_{\rm HI}) dN_{\rm HI}$ Shell has width Az (e.g. 1Gpc)

 - Projected surface densities
- f(N_{HI})
 - # of cells with N_{HI} per dN_{HI} per comoving absorption length (dX)
 - \bullet f(N_{HI}) is akin to a luminosity function
 - Distribution of projected $\Sigma_{\rm HI}$ for all galaxies in a shell of the sky (in a finite volume)

 $10^{21} \text{ cm}^{-2} = 8 \text{ M}_{\text{Sun}} \text{ pc}^{-2}$

- N_{HI} frequency distribution
 - Normalized to the survey path
- Measure the N_{HI} distribution for
 - all galaxies in $\overset{\infty}{P}$ shell $\ell(X) = \int_{\ell(X)}^{\infty} f(N_{\rm HI}) dN_{\rm HI} \int_{N_{\rm HI}}^{\infty} f(N_{\rm HI}) dN_{\rm HI}$ Shell has width Az (e.g. 1Gpc)

 - Projected surface densities
- f(N_{HI})
 - # of cells with N_{HI} per dN_{HI} per comoving absorption length (dX)
 - \bullet f(N_{HI}) is akin to a luminosity function
 - Distribution of projected $\Sigma_{\rm HI}$ for all galaxies in a shell of the sky

(in a finite volume)

How do we measure this observationally?

Measuring f(N_{HI}) at z=0

- Ideally
 - Analyze an all-sky 21cm map at high spatial resolution
- Alternate approach
 - i) Choose a sample of galaxies with a wide range of luminosity: L
 - ii) Map in 21cm at high spatial res.
 iii) Weight+normalize the results by the luminosity function Φ(L)

• WHISP

- ► Zwaan+ 2005
- Beam size of ~1kpc diameter

 $f(N_{\rm HI})$ at z=0

 $f(N_{HI})$ at z=0

 $f(N_{HI})$ at z=0

 $f(N_{\rm HI})$ at z=0

The overlap in the distribution functions seems a remarkable 'coincidence'. (Schaye 2001; Krumholz+ 2009)

$$\ell(X) = \int_{N_{th}}^{\infty} f(N_{\rm HI}) dN_{\rm HI} \sim < n_{\rm C} > < \sigma_{\rm ph} >$$

(DLA CRITERION)
$$N_{th} = 2 \times 10^{20} \,\mathrm{cm}^{-2} \quad (1.6 M_{\odot} \,\mathrm{pc}^{-2})$$

$$\ell(X) = \int_{N_{th}}^{\infty} f(N_{\rm HI}) dN_{\rm HI} \sim < n_{\rm C} > < \sigma_{\rm ph} >$$

(**DLA CRITERION**) $N_{th} = 2 \times 10^{20} \,\mathrm{cm}^{-2} \quad (1.6 M_{\odot} \,\mathrm{pc}^{-2})$

$$\ell(X) = \int_{N_{th}}^{\infty} f(N_{\rm HI}) dN_{\rm HI} \sim < n_{\rm C} > < \sigma_{\rm ph} >$$

21.5

21.0

log N_{HI}

22.0

-22

-23

-24

-25

-26

-27

20.5

 $\log f(N_{\rm HI})$

(**DLA CRITERION**) $N_{th} = 2 \times 10^{20} \,\mathrm{cm}^{-2} \quad (1.6 M_{\odot} \,\mathrm{pc}^{-2})$

 $\ell(X)$ is the number of galaxies intersected per absorption pathlength (ΔX). [opacity]

One intersects 1 galaxy every ~100 Gpc, on average.

<u>Covering fraction</u>: C_A = 1% for a 1Gpc shell at z=0

 H_2

HI

22.0

22.5

23.0

$$\ell(X) = \int_{N_{th}}^{\infty} f(N_{\rm HI}) dN_{\rm HI} \sim < n_{\rm C} > < \sigma_{\rm ph} >$$

-22

-24

-26

-28

-30

20.5

21.0

21.5

log N_{HI}

 $log\;f(N_{\rm HI})$

(**DLA CRITERION**) $N_{th} = 2 \times 10^{20} \,\mathrm{cm}^{-2} \quad (1.6 M_{\odot} \,\mathrm{pc}^{-2})$

 $\ell(X)$ is the number of galaxies intersected per absorption pathlength (ΔX). [opacity]

One intersects 1 galaxy every ~100 Gpc, on average.

<u>Covering fraction</u>: $C_A = 1\%$ for a 1Gpc shell at z=0 Note: $C_A(H_2) = 0.006\%$

1% Covering Fraction to 1.6 M_{Sun} pc⁻²

$$f(t) = \int_{N_{\min}}^{\infty} f(N_{\mathrm{HI}}) \, dN_{\mathrm{HI}}$$

First Moment: HI Mass Density

$$\rho_{\rm HI} = \frac{m_p H_0}{c} \int_{N_{th}}^{\infty} N_{\rm HI} f(N_{\rm HI}) \, dN_{\rm HI}$$

Aside: In practice, QHI is derived from all-sky surveys of HI galaxies

First Moment: HI Mass Density

Aside: In practice, QHI is derived from all-sky surveys of HI galaxies

 $Q_{HI}(z=0) = 5.2 \times 10^7 M_{Sun} Mpc^{-3}$
First Moment: HI Mass Density

Aside: In practice, QHI is derived from all-sky surveys of HI galaxies

 $Q_{HI}(z=0) = 5.2 \times 10^7 M_{Sun} Mpc^{-3}$ $Q_{H2}(z=0) = 1.1 \times 10^7 M_{Sun} Mpc^{-3}$

First Moment: HI Mass Density

Cosmic Evolution of HI in Galaxies

- How does HI evolve in galaxies in time?
- Are galaxies smaller in the past, e.g. lower C_A?
- Are galaxies more gas rich in the past?

BOUWENS+ 2008

• 21cm emission is 'hopeless'

• 21cm emission is 'hopeless'

- 21cm emission is 'hopeless'
- Lya in Absorption
 - Damped portion of the curve-of -growth
 - N_{HI} well measured in modest quality spectra
 - Can use GRBs, galaxies

PROCHASKA+ 2005 PROCHASKA & WOLFE 2009

• ~1000 DLAs

- Towards several thousand quasars
- Automated algorithm with refined (by-hand) analysis
- z=2.2 to 5

 $f(N_{HI})$ at $z\sim3$

 $f(N_{HI})$ at $z\sim3$

 $f(N_{HI})$ at $z\sim3$

 $f(N_{HI})$ at $z\sim3$

- No evolution from z=2 to 4
 - Gas remains distributed in a self-similar fashion during this 1Gyr

- No evolution from z=2 to 4
 - Gas remains distributed in a self-similar fashion during this 1Gyr
- No evolution from z=2 to 0!!
 - At all cosmic time, galaxies (as a population) have the same relative distribution of projected Σ_{HI}

On pc scales

- No evolution from z=2 to 4
 - Gas remains distributed in a self-similar fashion during this 1Gyr
- No evolution from z=2 to 0!!
 - At all cosmic time, galaxies (as a population) have the same relative distribution of projected Σ_{HI}
 - On pc scales
- No shift in the N_{HI} break with z
 - ▶ To within a factor of ~2
 - Consistent with H₂ physics

(Non)Evolution in the f(N_{HI}) Moments

(Non)Evolution in the f(N_{HI}) Moments

(Non)Evolution in the f(N_{HI}) Moments

Non-Evolution in the f(N_{HI}) Moments

- Galaxies today have nearly the same size* and total HI mass as 10 Gyr ago
 - Am willing to interpolate
 - i.e. constant since z~2
- But, we know stars have formed since z~2
 - Driven by gas accretion
 - (See other talks)
 - 'Disks' at large N_{HI} are critically unstable (Q~1) to SF at all times

*For a constant comoving number density

DLA Systematic Biases

- Dust (Ellison+01, Jorgenson+06)
 - Obscures background quasar
 - Likely a ~10% effect
- Color selection (Prochaska+09)
 - ► SDSS is biased toward DLAs at z-3
 - Possibly a 20% effect
 - Not important at z>3.5
- Survey path (Notredaeme+09)
 - DLAs affect the S/N of their spectra
 - ▶ Boosts statistics at z~2 by ~30%

FIG. 3.— The H I frequency distribution $f_{\rm HI}(N, X)$ for the 26 DLAs of the combined sample is plotted in red. Overplotted are the fits of a single power-law, the dot-dashed line in blue, and a Γ-function, the dashed line in red. The last bin contains the 2σ upper limit. Plotted in black is the $f_{\rm HI}(N, X)$ for the optical data from the SDSS-DR3, with the Γ-function fit in green.

Put a theory slide here?

A. Pontzen et al.

- Construction
 - Dark matter halo forms
 - Gas pools in
 - This may occur very rapidly (i.e. coeval)
 - Cools+recombines to form HI

- Construction
 - Dark matter halo forms
 - Gas pools in
 - This may occur very rapidly (i.e. coeval)
 - Cools+recombines to form HI
- Pool fills

- Construction
 - Dark matter halo forms
 - Gas pools in
 - This may occur very rapidly (i.e. coeval)
 - Cools+recombines to form HI
- Pool fills
- Excess water spills into H₂
 - H₂ rapidly converted to stars
 - HI level maintained

val)	HI	
H ₂		
Stars		

- Construction
 - Dark matter halo forms
 - Gas pools in
 - This may occur very rapidly (i.e. coeval)
 - Cools+recombines to form HI
- Pool fills
- Excess water spills into H₂
 - H₂ rapidly converted to stars
 - HI level maintained
- Accretion stops/slows
 - SF slows
 - Pool stays full
 - Absent a major (destructive) event

val)]	HI	
H ₂		
Stars		

- At z~2, all of the swimming pools are in place (and full)
 - ▶ i.e. Halos with M < 10¹² M_{Sun}
 - Predicted by LCDM

- At z~2, all of the swimming pools are in place (and full)
 - ▶ i.e. Halos with M < 10¹² M_{Sun}
 - Predicted by LCDM

Mo & WHITE 2002

- At z~2, all of the swimming pools are in place (and full)
 - ▶ i.e. Halos with M < 10¹² M_{Sun}
 - Predicted by LCDM
- Implications
 - HI 'disks' at z~2 are as large as today
 - True as a population
 - Very few HI 'disks' are destroyed since z~2
 - Those that are destroyed are replaced
 - Or existing ones grow

Evolution in the f(N_{HI}) Moments

- 2x decrease in $\ell(X)$ and $\varrho_{\rm HI}$ from z=4 to 2.5 (1 Gyr)
 - Eliminate, uniformly, gas at all surface densities
- Star formation?
 - Unlikely to remove gas with low Σ_{HI}
- Violent' processes
 - Mergers
 - Feedback

Evolution in the f(N_{HI}) Moments

- 2x decrease in $\ell(X)$ and ϱ_{HI} from z=4 to 2.5 (1 Gyr)
 - Eliminate, uniformly, gas at all surface densities
- Star formation?
 - Unlikely to remove gas with low Σ_{HI}
- 'Violent' processes
 - Mergers
 - Feedback

- Evolution in HI 'disks'
 - Not sufficient to empty each pool by 50%
 - This would reduce QHI
 - But would minimally change C_A
 - Need to remove 1/2 of the pools
 - While leaving the other 1/2 alone
- What drives this process?
 - SF: Consistent with the SFR
 - But why only 1/2 of the galaxies?
 - And how is the low Σ_{HI} gas removed?
 - Feedback?
 - Mergers?

- Evolution in HI 'disks'
 - Not sufficient to empty each pool by 50%
 - This would reduce QHI
 - But would minimally change C_A
 - Need to remove 1/2 of the pools
 - While leaving the other 1/2 alone
- What drives this process?
 - SF: Consistent with the SFR
 - But why only 1/2 of the galaxies?
 - And how is the low Σ_{HI} gas removed?
 - Feedback?
 - Mergers?

- Evolution in HI 'disks'
 - Not sufficient to empty each pool by 50%
 - This would reduce QHI
 - But would minimally change C_A
 - Need to remove 1/2 of the pools
 - While leaving the other 1/2 alone
- What drives this process?
 - SF: Consistent with the SFR
 - But why only 1/2 of the galaxies?
 - And how is the low Σ_{HI} gas removed?
 - Feedback?
 - Mergers?

Swimming Pool Theory of Galaxy Formation

- Evolution in HI 'disks'
 - Not sufficient to empty each pool by 50%
 - This would reduce QHI
 - But would minimally change C_A
 - Need to remove 1/2 of the pools
 - While leaving the other 1/2 alone
- What drives this process?
 - SF: Consistent with the SFR
 - But why only 1/2 of the galaxies?
 - And how is the low Σ_{HI} gas removed?
 - Feedback?
 - Mergers?

z~3 is the Epoch of Elliptical 'Formation'

- Red and 'dead' galaxies exist
 - Some mechanism removed the majority of their cold ISM to halt star formation
- Elliptical galaxies have old stellar populations
 - ► >10 Gyr (z>2)
- Connect:
 - Rapid decline in Q_{HI} and the covering of C_A

What do these swimming pools look like?

D. Ceverino, A. Dekel & F. Bournaud

 $H\alpha$ Intensity

- Galaxies (as a population) have the same distribution of $\Sigma_{\rm HI}$ at z=2 and 0
 - And probably at all times in between
 - Shape holds to z>4
- HI mass density and covering fraction decline by 50% in 1 Gyr from z=4 to 2
 - Mergers? Feedback? SF?
- Swimming Pool Theory of GF
 - ▶ z=4 to 2
 - 1/2 of the pools are completely emptied
 - ▶ z=2 to today
 - The pools are filled and do not evolve
 - SF proceeds only because of new accretion

