On the (Non)Evolution of HI

 "Disks" over Cosmic Time
J. XAVIER PROCHASKA
 UCO/LICK OBSERVATORY
 (IMPS: INTER[GALACTIC-STELLAR] MEDIUM
 PROGRAM OF STUDIES)

"The Swimming Pool Theory of Galaxy Formation"
A.M. WOLFE (UC SAN DIEGO)

Overview

- Goal: Discuss the global evolution of HI in galaxies across cosmic time
- Motivations
- HI gas feeds star formation (via H_{2})
\uparrow Total HI content is a balance between SF, accretion, and "feedback"
- HI is a signpost for recent/current/future SF

$\mathrm{HI}=21 \mathrm{~cm}$

HI at $\mathrm{z}=0$

HIPASS: Zwaan et al. 2005

21 cm HI Maps

THINGS: WALTER +2008

21 cm HI Maps

THINGS: WALTER $+2008_{5}$

Galactic Σ_{HI} Profiles

- Analysis
- De-projection by inclination
- Average azimuthally
- Plot
- Common characteristics
- HI 'holes' at the center
- Steep decline for $\mathrm{R}<\mathrm{R}_{25}$
- Power-law (Metsel) beyond

HOLWERDA+ 2005

Mapping HI at z>0

LAH+ 2007

Mapping HI at z>0

- 21 cm ?
- Not with today's telescopes
- SKA (i.e. >2020)

Mapping HI at $z>0$

- 21 cm ?
- Not with today's telescopes
- SKA (i.e. >2020)

LAH+ 2009

$200 \mu \mathrm{Jy}$
$100 \mu \mathrm{Jy}$
$0 \mu \mathrm{Jy}$
$-100 \mu \mathrm{Jy}$
$-200 \mu \mathrm{Jy}$

Mapping HI at $z>0$

SHAPIRO+ 2008

- 21 cm ?
- Not with today's telescopes
- SKA (i.e. >2020)
- Ha, Ly α
- Difficult observations
- Primarily trace ionized H gas
- But connected to atomic/molecular gas

H α Intensity

RAUCH+2008

Mapping HI at z>0

- 21 cm ?
- Not with today's telescopes
- SKA (i.e. >2020)
- Ha, Ly α
- Difficult observations
- Primarily trace ionized H gas
- But connected to atomic/molecular gas
- HI?
- Ly α absorption
- via Quasars, GRBs, etc.

H α Intensity

RAUCH+2008

21 cm HI Maps

21cm HI Maps

21cm HI Maps

$\mathrm{f}\left(\mathrm{N}_{\mathrm{HI}}\right)$: Definition

$10^{21} \mathrm{~cm}^{-2}=8 \mathrm{M}_{\text {Sun }} \mathrm{pc}^{-2}$

$\mathrm{f}\left(\mathrm{N}_{\mathrm{HI}}\right)$: Definition

$10^{21} \mathrm{~cm}^{-2}=8 \mathrm{M}_{\text {Sun }} \mathrm{pc}^{-2}$

- N_{HI} frequency distribution
- Normalized to the survey path

$\mathrm{f}\left(\mathrm{N}_{\mathrm{HI}}\right)$: Definition

$$
10^{21} \mathrm{~cm}^{-2}=8 \mathrm{M}_{\text {Sun }} \mathrm{pc}^{-2}
$$

- N_{HI} frequency distribution
- Normalized to the survey path
- Measure the N_{HI} distribution for all galaxies in a shell
- Shell has width $\Delta \mathrm{z}$ (e.g. 1Gpc)
- Projected surface densities

$\mathrm{f}\left(\mathrm{N}_{\mathrm{HI}}\right)$: Definition

$$
10^{21} \mathrm{~cm}^{-2}=8 \mathrm{M}_{\text {Sun }} \mathrm{pc}^{-2}
$$

- N_{HI} frequency distribution
- Normalized to the survey path
- Measure the N_{HI} distribution for all galaxies in a shell
- Shell has width $\Delta \mathrm{z}$ (e.g. 1Gpc)
- Projected surface densities
- $\mathrm{f}\left(\mathrm{N}_{\mathrm{HI}}\right)$
- \# of cells with N_{HI} per $\mathrm{dN}_{\mathrm{HI}}$ per comoving absorption length (dX)
- $f\left(N_{H}\right)$ is akin to a luminosity function
- Distribution of projected Σ_{HI} for all galaxies in a shell of the sky
- (in a finite volume)

$\mathrm{f}\left(\mathrm{N}_{\mathrm{HI}}\right)$: Definition

$$
10^{21} \mathrm{~cm}^{-2}=8 \mathrm{M}_{\text {Sun }} \mathrm{pc}^{-2}
$$

- N_{HI} frequency distribution
- Normalized to the survey path
- Measure the N_{HI} distribution for all galaxies in a shell
- Shell has width $\Delta \mathrm{z}$ (e.g. 1Gpc)
- Projected surface densities
- $\mathrm{f}\left(\mathrm{N}_{\mathrm{H}}\right)$
- \# of cells with N_{HI} per $\mathrm{dN}_{\mathrm{HI}}$ per comoving absorption length (dX) - $f\left(\mathrm{~N}_{\mathrm{H}}\right)$ is akin to a luminosity function
- Distribution of projected $\Sigma_{\text {HI }}$ for all galaxies in a shell of the sky \uparrow (in a finite volume)

How do we measure this observationally?

Measuring $\mathrm{f}\left(\mathrm{N}_{\mathrm{HI}}\right)$ at $\mathrm{z}=0$

- Ideally
- Analyze an all-sky 21 cm map at high spatial resolution
- Alternate approach
i) Choose a sample of galaxies with a wide range of luminosity: L
ii) Map in 21 cm at high spatial res.
iii) Weight+normalize the results by the luminosity function $\Phi(\mathrm{L})$
- WHISP
- Zwaan+ 2005
- Beam size of $\sim 1 \mathrm{kpc}$ diameter

$\mathrm{f}\left(\mathrm{N}_{\mathrm{HI}}\right)$ at $\mathrm{z}=0$

$\mathrm{f}\left(\mathrm{N}_{\mathrm{H}}\right)$ at $\mathrm{z}=0$

$\mathrm{f}\left(\mathrm{N}_{\mathrm{H}}\right)$ at $\mathrm{z}=0$

$\mathrm{f}\left(\mathrm{N}_{\mathrm{H}}\right)$ at $\mathrm{z}=0$

The overlap in the distribution functions seems a remarkable "coincidence'. (Schaye 2001; Krumholz+ 2009)

Zeroth Moment: "Covering Fraction"

$$
\ell(X)=\int_{N_{t h}}^{\infty} f\left(N_{\mathrm{HI}}\right) d N_{\mathrm{HI}} \sim<n_{\mathrm{C}}><\sigma_{\mathrm{ph}}>
$$

(DLA CRITERION)
$N_{t h}=2 \times 10^{20} \mathrm{~cm}^{-2} \quad\left(1.6 M_{\odot} \mathrm{pc}^{-2}\right)$

Zeroth Moment: "Covering Fraction"

$$
\ell(X)=\int_{N_{\text {th }}}^{\infty} f\left(N_{\mathrm{HI}}\right) d N_{\mathrm{HI}} \sim<n_{\mathrm{C}}><\sigma_{\mathrm{ph}}>
$$

(DLA CRITERION)
$N_{t h}=2 \times 10^{20} \mathrm{~cm}^{-2} \quad\left(1.6 M_{\odot} \mathrm{pc}^{-2}\right)$

Zeroth Moment: "Covering Fraction"

$$
\ell(X)=\int_{N_{\text {th }}}^{\infty} f\left(N_{\mathrm{HI}}\right) d N_{\mathrm{HI}} \sim<n_{\mathrm{C}}><\sigma_{\mathrm{ph}}>
$$

(DLA CRITERION)

$$
N_{t h}=2 \times 10^{20} \mathrm{~cm}^{-2} \quad\left(1.6 M_{\odot} \mathrm{pc}^{-2}\right)
$$

$\ell(X)$ is the number of galaxies intersected per absorption pathlength ($\Delta \mathrm{X}$). [opacity]

One intersects 1 galaxy every $\sim 100 \mathrm{Gpc}$, on average.

Covering fraction:
$\mathrm{C}_{\mathrm{A}}=1 \%$ for a 1 Gpc shell at $\mathrm{z}=0$

Zeroth Moment: "Covering Fraction"

$$
\ell(X)=\int_{N_{t h}}^{\infty} f\left(N_{\mathrm{HI}}\right) d N_{\mathrm{HI}} \sim<n_{\mathrm{C}}><\sigma_{\mathrm{ph}}>
$$

(DLA CRITERION)
$N_{t h}=2 \times 10^{20} \mathrm{~cm}^{-2} \quad\left(1.6 M_{\odot} \mathrm{pc}^{-2}\right)$

$\ell(X)$ is the number of galaxies intersected per absorption pathlength ($\Delta \mathrm{X}$). [opacity]

One intersects 1 galaxy every $\sim 100 \mathrm{Gpc}$, on average.

Covering fraction:
$\mathrm{C}_{\mathrm{A}}=1 \%$ for a 1 Gpc shell at $\mathrm{z}=0$
Note: $\mathrm{C}_{\mathrm{A}}\left(\mathrm{H}_{2}\right)=0.006 \%$

1% Covering Fraction to $1.6 \mathrm{M}_{\text {sun }} \mathrm{pc}^{-2}$

First Moment: HI Mass Density

$$
\rho_{\mathrm{HI}}=\frac{m_{p} H_{0}}{c} \int_{N_{t h}}^{\infty} N_{\mathrm{HI}} f\left(N_{\mathrm{HI}}\right) d N_{\mathrm{HI}}
$$

Aside: In practice, ϱ_{HI} is derived from all-sky surveys of HI galaxies

First Moment: HI Mass Density

Aside: In practice, ϱ_{HI} is derived from all-sky surveys of HI galaxies
$\varrho_{\mathrm{HI}}(\mathrm{z}=0)=5.2 \times 10^{7} \mathrm{M}_{\text {Sun }} \mathrm{Mpc}^{-3}$

First Moment: HI Mass Density

$\rho_{\mathrm{HI}}=\frac{m_{p} H_{0}}{c} \int_{N_{t h}}^{\infty} N_{\mathrm{HI}} f\left(N_{\mathrm{HI}}\right) d N_{\mathrm{HI}}$

Aside: In practice, ϱ_{HI} is derived from all-sky surveys of HI galaxies
$\varrho_{\mathrm{HI}}(\mathrm{z}=0)=5.2 \times 10^{7} \mathrm{M}_{\text {Sun }} \mathrm{Mpc}^{-3}$
$\varrho_{\mathrm{H} 2}(\mathrm{z}=0)=1.1 \times 10^{7} \mathrm{M}_{\text {Sun }} \mathrm{Mpc}^{-3}$

First Moment: HI Mass Density

$$
\rho_{\mathrm{HI}}=\frac{m_{p} H_{0}}{c} \int_{N_{t h}}^{\infty} N_{\mathrm{HI}} f\left(N_{\mathrm{HI}}\right) d N_{\mathrm{HI}}
$$

Aside: In practice, ϱ_{HI} is derived from all-sky surveys of HI galaxies

$$
\begin{aligned}
\varrho_{\mathrm{HII}}(\mathrm{z}=0) & =5.2 \times 10^{7} \mathrm{M}_{\text {Sun }} \mathrm{Mpc}^{-3} \\
\varrho_{\mathrm{H} 2}(\mathrm{z}=0) & =1.1 \times 10^{7} \mathrm{MSun} \mathrm{Mpc}^{-3} \\
\varrho_{\text {Stars }}(\mathrm{z}=0) & =26 \times 10^{7} \mathrm{M}_{\text {Sun }} \mathrm{Mpc}^{-3}
\end{aligned}
$$

Cosmic Evolution of HI in Galaxies

- How does HI evolve in galaxies in time?
- Are galaxies smaller in the past, e.g. lower C_{A} ?
- Are galaxies more gas rich in the past?

BOUWENS+ 2008

Heading to the High z Universe

Heading to the High z Universe

- 21 cm emission is 'hopeless'

Heading to the High z Universe

- 21 cm emission is 'hopeless'

Heading to the High z Universe

- 21 cm emission is 'hopeless'
- Ly α in Absorption
- Damped portion of the curve-of -growth
- NHI well measured in modest quality spectra
- Can use GRBs, galaxies

SDSS DR5

```
PROCHASKA+ 2005
PROCHASKA \& WOLFE 2009
```


- ~1000 DLAs

- Towards several thousand

quasars

- Automated algorithm with refined (by-hand) analysis
- $z=2.2$ to 5

$\mathrm{f}\left(\mathrm{N}_{\mathrm{HI}}\right)$ at $\mathrm{z} \sim 3$

Non-Evolution in the Shape of $f\left(\mathrm{~N}_{\mathrm{HI}}\right)$

P\&W 2009

Non-Evolution in the Shape of $f\left(\mathrm{~N}_{\mathrm{HI}}\right)$

- No evolution from $z=2$ to 4
- Gas remains distributed in a self-similar fashion during this 1 Gyr

P\&W 2009

Non-Evolution in the Shape of $f\left(\mathrm{~N}_{\mathrm{HI}}\right)$

- No evolution from $\mathrm{z}=2$ to 4
- Gas remains distributed in a self-similar fashion during this 1 Gyr
- No evolution from $\mathrm{z}=2$ to 0 !!
- At all cosmic time, galaxies (as a population) have the same relative distribution of projected $\Sigma_{\text {HI }}$
- On pe scales

P8W 2009

Non-Evolution in the Shape of $f\left(\mathrm{~N}_{\mathrm{HI}}\right)$

- No evolution from $\mathrm{z}=2$ to 4
- Gas remains distributed in a self-similar fashion during this 1 Gyr
- No evolution from $\mathrm{z}=2$ to 0 !!
- At all cosmic time, galaxies (as a population) have the same relative distribution of projected Σ_{HI}
- On pe scales
- No shift in the \mathbf{N}_{HI} break with \mathbf{z}
- To within a factor of ~ 2
- Consistent with H_{2} physics

P8W 2009

(Non)Evolution in the $f\left(\mathrm{~N}_{\mathrm{HI}}\right)$ Moments

(Non)Evolution in the $f\left(\mathrm{~N}_{\mathrm{HI}}\right)$ Moments

(Non)Evolution in the $f\left(\mathrm{~N}_{\mathrm{HI}}\right)$ Moments

Non-Evolution in the $\mathrm{f}\left(\mathrm{N}_{\mathrm{HI}}\right)$ Moments

- Galaxies today have nearly the same size* and total HI mass as 10 Gyr ago
- Am willing to interpolate
- i.e. constant since $2 \sim 2$
- But, we know stars have formed since $\mathbf{z \sim 2}$
- Driven by gas accretion
\uparrow (See other talks)
- 'Disks' at large N_{HI} are critically unstable (Q~1) to SF at all times

$$
\begin{aligned}
& \text { For a constant } \\
& \text { comoving number } \\
& \text { density }
\end{aligned}
$$

DLA Systematic Biases

- Dust
(Ellison+01,Jorgenson +06)
- Obscures background quasar
- Likely a ~10\% effect
- Color selection
(Prochaska+09)
- SDSS is biased toward DLAs at z-3
- Possibly a 20\% effect
- Not important at $z>3.5$
- Survey path (Notredaeme+09)
- DLAs affect the S / N of their spectra
- Boosts statistics at z~2 by ~30\%

Fig. 3.- The H I frequency distribution $f_{\mathrm{HI}}(N, X)$ for the 26 DLAs of the combined sample is plotted in red. Overplotted are the fits of a single power-law, the dot-dashed line in blue, and a Γ function, the dashed line in red. The last bin contains the 2σ upper limit. Plotted in black is the $f_{\mathrm{HI}}(N, X)$ for the optical data from the SDSS-DR3, with the Γ-function fit in green.

Put a theory slide here?

6 A. Pontzen et al.

Swimming Pool Theory of Galaxy Formation

See also Bouche \& Dekel 2009

Swimming Pool Theory of Galaxy Formation

- Construction
- Dark matter halo forms
- Gas pools in
- This may occur very rapidly (i.e. coeval)
- Cools+recombines to form HI

See also Bouche \& Dekel 2009

Swimming Pool Theory of Galaxy Formation

- Construction
- Dark matter halo forms
- Gas pools in
- This may occur very rapidly (i.e. coeval)
- Cools+recombines to form HI
- Pool fills

See also Bouche \& Dekel 2009

Swimming Pool Theory of Galaxy Formation

- Construction
- Dark matter halo forms
- Gas pools in
- This may occur very rapidly (i.e. coeval)

HI

+ Cools+recombines to form HI
- Pool fills
- Excess water spills into H_{2}
- H_{2} rapidly converted to stars
- HI level maintained

Swimming Pool Theory of Galaxy Formation

- Construction
- Dark matter halo forms
- Gas pools in
- This may occur very rapidly (i.e. coeval)

HI

- Cools+recombines to form HI
- Pool fills
- Excess water spills into H_{2}
- H_{2} rapidly converted to stars
- HI level maintained
- Accretion stops/slows
- SF slows
- Pool stays full
- Absent a major (destructive) event

See also Bouche \& Dekel 2009

Swimming Pool Theory of Galaxy Formation

Swimming Pool Theory of Galaxy Formation

- At $\mathbf{z} \sim 2$, all of the swimming pools are in place (and full) - i.e. Halos with $M<10^{12} M_{\text {sun }}$
+ Predicted by LCDM

Swimming Pool Theory of Galaxy Formation

- At $\mathbf{z} \sim 2$, all of the swimming pools are in place (and full) - i.e. Halos with $M<10^{12} M_{\text {sun }}$
+ Predicted by LCDM

Mo \& White 2002

Swimming Pool Theory of Galaxy Formation

- At $\mathbf{z} \sim 2$, all of the swimming pools are in place (and full)
- i.e. Halos with $M<10^{12} M_{\text {sun }}$
- Predicted by LCDM

- Implications
- HI ‘disks’ at z~2 are as large as today
- True as a population
- Very few HI ‘disks’ are destroyed since $\mathbf{z \sim 2}$
- Those that are destroyed are replaced
- Or existing ones grow

Evolution in the $\mathrm{f}\left(\mathrm{N}_{\mathrm{HI}}\right)$ Moments

- $2 x$ decrease in $\ell(X)$ and ϱ_{HI} from $\mathrm{z}=4$ to 2.5 (1 Gyr)
- Eliminate, uniformly, gas at all surface densities
- Star formation?
- Unlikely to remove gas with low Σ_{HI}
- 'Violent' processes
- Mergers
- Feedback

Evolution in the $f\left(\mathrm{~N}_{\mathrm{HI}}\right)$ Moments

- 2 x decrease in $\ell(\mathrm{X})$ and ϱ_{HI} from $\mathrm{z}=4$ to 2.5 (1 Gyr)
- Eliminate, uniformly, gas at all surface densities
- Star formation?
- Unlikely to remove gas with low Σ_{HI}
- 'Violent' processes
- Mergers
- Feedback

- Evolution in HI ‘disks’
- Not sufficient to empty each pool by 50%
- This would reduce @нi
\uparrow But would minimally change C_{A}
- Need to remove $1 / 2$ of the pools
\uparrow While leaving the other $1 / 2$ alone
- What drives this process?
- SF: Consistent with the SFR
\uparrow But why only $1 / 2$ of the galaxies?
\uparrow And how is the low $\Sigma_{\text {HI }}$ gas removed?
- Feedback?
- Mergers?

- Evolution in HI ‘disks’
- Not sufficient to empty each pool by 50\%
- This would reduce @HI
\uparrow But would minimally change C_{A}
- Need to remove $1 / 2$ of the pools
* While leaving the other $1 / 2$ alone
-What drives this process?
- SF: Consistent with the SFR
\uparrow But why only $1 / 2$ of the galaxies?
\star And how is the low $\Sigma_{\text {HI }}$ gas removed?
- Feedback?
- Mergers?

- Evolution in HI ‘disks’
- Not sufficient to empty each pool by 50\%
- This would reduce @нi
\uparrow But would minimally change C_{A}
- Need to remove $1 / 2$ of the pools
\uparrow While leaving the other $1 / 2$ alone
- What drives this process?
- SF: Consistent with the SFR
\uparrow But why only $1 / 2$ of the galaxies?
\uparrow And how is the low $\Sigma_{\text {HI }}$ gas removed?
- Feedback?
- Mergers?

Swimming Pool Theory of Galaxy Formation

- Evolution in HI ‘disks’
- Not sufficient to empty each pool by 50\%
- This would reduce @нi
\uparrow But would minimally change C_{A}
- Need to remove $1 / 2$ of the pools
* While leaving the other $1 / 2$ alone
- What drives this process?
- SF: Consistent with the SFR
\uparrow But why only $1 / 2$ of the galaxies?
\star And how is the low $\Sigma_{\text {HI }}$ gas removed?
- Feedback?
- Mergers?

z~3 is the Epoch of Elliptical 'Formation'

- Red and 'dead’ galaxies exist
- Some mechanism removed the majority of their cold ISM to halt star formation
- Elliptical galaxies have old stellar populations
- >10 Gyr (z>2)
- Connect:
- Rapid decline in @ні and the covering of C_{A}

What do these swimming pools look like?

D. Ceverino, A. Dekel \& F. Bournaud

ALMA will play a major role here...

Ha Intensity

Summary

- Galaxies (as a population) have the same distribution of Σ_{HI} at $\mathrm{z}=2$ and 0
- And probably at all times in between
- Shape holds to $\mathrm{z}>4$
- HI mass density and covering fraction decline by 50% in 1 Gyr from $\mathrm{z}=4$ to 2
- Mergers? Feedback? SF?
- Swimming Pool Theory of GF
- $\mathrm{z}=4$ to 2
- $1 / 2$ of the pools are completely emptied

- $\mathrm{z}=2$ to today
- The pools are filled and do not evolve
- SF proceeds only because of new accretion

