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What drives star formation? What inhibits star formation?

Physics:

Gravity vs pressure (thermal, magnetic, 
turbulence, radiation, cosmic rays) and 
shear. 

Heating and cooling, generation and 
decay of turbulence, generation 
(dynamo) and diffusion of B-fields, etc.

Chemical evolution of dust and gas.

Wide range of scales (~12 dex in 
space, time) and multidimensional. 

Uncertain/unconstrained initial 
conditions/boundary conditions.

General theory of star formation
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A complicated, nonlinear process

Some notation:

Core -> star or close binary

Clump -> star cluster



Star Formation: Open Questions
• Causation: external triggering or spontaneous 

gravitational instability?

• Initial conditions: how close to equilibrium?

• Accretion mechanism: turbulent and/or 
magnetically regulated fragmentation vs 
competitive accretion

• Timescale: fast or slow (# of dynamical times)?

• End result

– Initial mass function (IMF)

– Binary fraction and properties

– Initial cluster mass function (ICMF)

– Efficiency and Rate (& relation to galaxy-scale)

How do these properties vary with environment?



From Cores to Stars: 

Individual Stars Appear to Form from Cores

Nutter & Ward-Thompson (2007)

Beuther & Schilke (2004)

See also: e.g. Testi & Sargent 1998; Motte et al. 2001; Mike Reid & Wilson 2005; Alves et al. 2007; Li et al. 2007; Enoch et al. 2008; 

Pineda et al. 2009.  

748 RATHBORNE ET AL. Vol. 699

Figure 5. Derived CMFs shown as binned histograms. The four panels correspond to different core samples when taking into consideration the C18O (1–0) molecular
line emission. Note that the shape of the mass function changes considerably when we use the C18O (1–0) emission to guide the core extraction from the extinction
image (i.e., between panels (a) and (d)). The dashed line corresponds to the scaled field star IMF of Muench et al. (2002). For each panel we determine, via a χ2

minimization, the offsets between the CMF and the IMF. To accurately determine these scaling factors, we minimize the χ2 between the distributions only for masses
above the completeness limit. The derived parameters are summarized in Table 1. The vertical dotted line marks the mass completeness limit (Kainulainen et al. 2009).
Included on the histograms are the errors for each bin (calculated as the square root of the number per bin).

A more significant change in the shape of the CMF occurs
when we consider the C18O (1–0) velocity differences and
angular distances between neighboring extinction peaks, as
shown in Figure 5(d). In this case, extinction features are merged
if their velocity differences are less than the one-dimensional
projected sound speed and separations are less than a Jeans
length. This results in an increase in the number of cores at the
high-mass end (M > 5 M!) and a decrease in the number of
cores between masses of ∼0.3 and ∼3 M!.

Regardless of the exact shape, it appears that none of the
CMFs shown in Figure 5 are characterized by a single power-
law. Instead, there is a break from a single power-law form
providing a physical scale or characteristic mass for the CMF
around ∼2–3 M!. The lowest mass bins in the CMF are
most likely seriously effected by incompleteness. Thus, the
position of the peak and the turnover at the very lowest masses
(M ∼ 0.4 M!) may be unreliable. The simulations show that
this mass range is most affected by the incompleteness due to
the wavelet decomposition. While all the CMFs peak at roughly
the same mass and show a break that is well above the mass
completeness limit, the most likely to be reliably tracing the
underlying distribution of core masses is the CMF shown in
Figure 5(d). Thus, from here forward we adopt this distribution
as the CMF for the Pipe Nebula.

It is of interest to core and star formation studies to com-
pare the forms of the CMF and stellar IMF. To achieve this
quantitatively, we have performed a χ2 minimization between
the Pipe CMF and the stellar IMF by simultaneously scaling
the IMF in both the x- and y-directions. The scaling factor in
x-direction will give the mass scaling between the CMF and the
IMF. Assuming that each core will give rise to a ∼1 star on
average, this offset will give an estimate of the star-formation
efficiency (SFE), that is, how much of the typical core mass is
converted into the final stellar mass. We have also calculated the
χ2 probability and use this to estimate the errors. The quoted
errors are calculated from the range in the values for which the
χ2 probability is greater than 95% (i.e., 2σ ). We estimate that
the SFE is 22% ± 8% and that the break in the CMF occurs at

a mass of 2.7 ± 1.3 M!. Using the derived scaling factors for
the IMF, we have also performed a Kolmogorov–Smirnov (KS)
test between the scaled-up stellar IMF and the Pipe CMF. We
find that the probability that the distributions are derived from
the same parent population is 47%.

For further comparison and to give a quantitative measure
of how the inclusion of more information from the C18O
(1–0) emission effects the derived parameters, we have also
performed the above analysis on the other three CMFs shown
in Figure 5. Table 1 lists the derived parameters (mass scaling,
SFE, and CMF break point) and their errors for each panel
of the CMFs shown in Figure 5. Although Figures 5(a) and
(b) contain spurious and unrelated cores, we find that the
derived parameters are similar to those determined for the other
distributions. Considering each of the Pipe cores that have C18O
(1–0) emission as separate entities, as shown in Figure 5(c), we
find that the CMF differs from the scaled IMF significantly for
the highest masses. This is reflected in a low KS probability
(7%) that the two are derived from the same parent population.
Indeed, all three of these distributions have significantly lower
probabilities (7%–8%) of being derived from the same parent
distribution as the stellar IMF compared to the adopted Pipe
CMF (47%).

5. DISCUSSION

5.1. Derived Core Properties

Because of the identification and selection methods used here,
the individual core properties may differ slightly from those
listed in our previous work (Alves et al. 2007; Muench et al.
2007; Lada et al. 2008; Rathborne et al. 2008). However, the
mean values for the radii, n(H2), and σnt are identical to our
previous work, i.e., mean radii of ∼0.09 pc, n(H2) of ∼ 7.3 ×
103 cm−3, and σnt of ∼0.18 km s−1. Although the properties of
the individual cores may differ, the ensemble properties remain
unchanged: the cores appear to be mostly pressure confined
entities whose properties are determined by the approximate

Rathborne et al. (2009)  

!core = m*/mcore  ->      ~0.06                          0.22+-0.08



Implications
• The IMF may be partially set by CMF

• There are massive, starless, apparently near 

equilibrium cores: supported by magnetic fields or 

turbulence?

• The formation of stars from cores may be relatively 

inefficient:

– Protostellar outflow feedback is likely to be 

important for low-mass cores (Matzner & McKee 

1999: !core ~0.3-0.5) and maybe for high-mass 

cores also.

– However, still need to understand effects of 

binarity, core definition and resolution



Turbulent core model
(McKee & Tan 2002, 2003)

Schematic Differences Between 

Massive Star Formation Theories

time

disk fragmentation

core fragmentation

t=0

protostar

formation

massive

star

m*f>8M
!

m*=8M
!

pre-massive-stellar core massive-star-forming core

massive-protostar (MP)LIMP-MP

Competitive Bondi-Hoyle accretion model 

(Bonnell ea. 2001; Bonnell & Bate 2006)

Beuther, Churchwell,
McKee, Tan (2007);
Tan (2008)



Massive Starless Cores
MIPS 24"m IRAC 8"m

Extinction Map

Butler & Tan (2009), Butler & Tan, in prep.

# = 0.26 g cm-2   mcore = 205 M!

# = 0.12 g cm-2   mcore = 94 M!

# = 0.12 g cm-2   mcore = 50 M!

Cores show central concentration, 

approximately Bonnor-Ebert radial 

profiles. They contain many 

thermal Jeans masses. Magnetic 

fields may be suppressing 

fragmentation within the core.

10”

10”

10”

nH~105cm-3, B~1mG -> MB~100 M!



Evidence for strong magnetic fields in 
massive star-forming cores 

Magnetic Fields in the Formation of
Massive Stars
Josep M. Girart,1* Maria T. Beltrán,2† Qizhou Zhang,3 Ramprasad Rao,4 Robert Estalella2

Massive stars play a crucial role in the production of heavy elements and in the evolution of the
interstellar medium, yet how they form is still a matter of debate. We report high-angular-resolution
submillimeter observations toward the massive hot molecular core (HMC) in the high-mass
star-forming region G31.41+0.31. We find that the evolution of the gravitational collapse of the
HMC is controlled by the magnetic field. The HMC is simultaneously contracting and rotating,
and the magnetic field lines threading the HMC are deformed along its major axis, acquiring an
hourglass shape. The magnetic energy dominates over the centrifugal and turbulence energies,
and there is evidence of magnetic braking in the contracting core.

Stars more massive than 8M◉ (whereM◉ is
the mass of the Sun) account for only 1%
of the stellar population in our Galaxy.

Nevertheless they dominate the appearance and
evolution of its interstellar medium and are re-
sponsible for the production of heavy elements.

The formation of massive stars is not com-
pletely understood. Stars form when dense mo-
lecular clouds collapse as a result of gravity. But
as the mass of a young star reaches 8M◉, its own
radiation can exert enough outward pressure to
halt infall, inhibiting further stellar growth (1).
The presence of a flattened accretion disk sur-
rounding the protostar (2) can alleviate this in-

hibition by shielding the infalling material from
stellar radiation and by creating a lower density
section along the rotation axis of the disk and a
molecular outflow, which helps by channeling the
radiation out, allowing the formation of stars more
massive than 40M◉ (3–5). Massive stars may also
form through mergers of smaller stars (6).

The scenario whereby massive stars form
through disk-assisted accretion resembles the
way stars like the Sun form. Both processes
involve accretion through a flattened disk and
molecular outflows. The magnetic field is thought
to play an important role in the formation of Sun-
like stars by shaping cloud collapse, removing ex-

cess angular momentum, and thus allowing con-
tinuous accretion (7–9), even in the case of an
originally weak magnetic field (10). High-angular-
resolution polarimetric observations of the low-
mass protostellar system NGC 1333 IRAS 4A
(IRAS 4A) showed a magnetic field with a clear
hourglass morphology at scales of a few hundred
astronomical units (AU) around the collapsing mo-
lecular core surrounding the protostars (11), a con-
figuration that was shown to be consistent with
theoretical models for the formation of solar-type
stars, where well-ordered, large-scale, rather than
turbulent, magnetic fields control the evolution
and collapse of the molecular cores from which
stars form (12).

We investigated the hot molecular core (HMC)
in G31.41+0.31 (G31.41), a massive star-forming
region [~500 to 1500 M◉ (13, 14)] located 7900
parsecs (pc) away (15). G31.41 has a luminosity

REPORTS

1Institut de Ciències de l’Espai [Consejo Superior de Inves-
tigaciones Científicas (CSIC)–Institut d’Estudis de Catalunya
(IEEC)], Campus Universitat Autònoma de Barcelona (UAB)–
Facultat de Ciències, Torre C5 - parell 2a, 08193 Bellaterra,
Catalunya, Spain. 2Departament d'Astronomia i Meteorologia
(IEEC-UB). Institut de Ciencies del Cosmos y Unitat Associada a
CSIC, Universitat de Barcelona, Martí i Franquès 1, 08028
Barcelona, Catalunya, Spain. 3Harvard-Smithsonian Center for
Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA.
4Academia Sinica, Institute of Astronomy and Astrophysics, 645
North Aohoku Place, Hilo, HI 96720, USA.

*To whom correspondence should be addressed. E-mail:
girart@ieec.cat
†Present address: Osservatorio Astrofisico di Arcetri, Largo
Enrico Fermi 5, 50125 Firenze, Italy.

A B C

Fig. 1. (A) Contour map of the 879-mm dust emission superposed on the color
image of the polarized flux intensity in units of Jy per beam. Black thick bars
indicate the position angle of the magnetic field. These maps were obtained by
using a natural weighting to the visibility data, which yielded to a full width at
half maximum synthesized beam of 1.34″ × 0.83″ with a position angle of 67°
(shown in the bottom left corner). Contour levels are 0.8, 1.5, 2.5, 4, 6, 16,
26, 36…96% of the peak intensity, 9.13 Jy per beam. (B) Contour map of the
879 mm dust emission superposed on the color image of the flux weighted

velocity map of the CH3OH 147-156 A. Black thick bars indicate the direction
of the magnetic field. These maps were obtained by using a robust weighting
of 0 to the visibility data, which yielded to a full width at half maximum
synthesized beam of 1.04″ × 0.59″ with a position angle of 82° (shown in the
bottom left corner). Contour levels are the same as in the previous panel, with
a peak intensity of 6.55 Jy per beam. (C) Spectrum of the C34S 7-6 line at the
position of the dust emission peak. The continuum has been subtracted from
the line emission (this is valid for all the molecular line data presented here).
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Girart et al. (2009)



ALMA Opportunity

Measure the Pre-stellar CMF down to the 

thermal Jeans mass (or ~0.1M
!
) in a range of 

GMC environments across the Galaxy.

-> 3.3x10-3pc for m*=0.1M
! 

-> ~0.1” at d=8kpc

- Determine “core” boundaries based on kinematics. Find 

gravitationally bound structures.

- Resolve internal structure of massive cores, including B-field 

strengths (Zeeman).

- Resolve core and disk fragmentation in star-forming cores.



From Clumps to Cores:

Theories to Explain the CMF

Turbulence-Regulated 

Fragmentation:
Padoan & Nordlund (2002); Tilley & 

Pudritz (2004); Hennebelle & Chabrier 

(2009); See also talk by B. Elmegreen.

L4 M. W. Kunz and T. Ch. Mouschovias

The dependence of the core mass mc (normalized to the initial
thermal critical mass mT,0) on µ0 is shown in Fig. 2 for P̃ext =
0.1 and τ̃ni,0 = 0.162 (dashed line), 0.230 (solid line) and 0.325
(dotted line). For µ0 ! 0.5, mc ! µ0mT,0, whereas for µ0 " 1,
mc ! mT,0. In between these two extremes, the core mass increases
significantly due to the action of gravitationally driven ambipolar
diffusion.

3.3 The initial core mass function

In the absence of magnetic fields, the core mass is equal to the
thermal critical mass given by equation (7a), i.e. mc,B=0 = mT,0 ∝
n

−1/2
n,0 T

3/2
0 . Given that the deep interiors of molecular clouds (where

stars form) are observed to be approximately isothermal, the width
of the CMF is then determined by the width of the initial probabil-
ity density function (PDF) of number densities. In order to generate
cores spanning almost two decades in mass, one therefore requires
an initial density PDF spanning almost four decades. By contrast,
in the presence of magnetic fields, mc = f (µ0, τ̃ni,0) mc,B=0. There-
fore, one may obtain a spectrum of masses due to changes in the
local mass-to-flux ratio. In fact, one only requires a one-decade
spread in initial mass-to-flux ratios (0.1 ! µ0 ! 1) to generate a
two-decade spread in core masses (see Fig. 2).

To derive the CMF predicted by the theory of ambipolar-
diffusion–initiated star formation, we make the following assump-
tions. (i) All protostellar fragments form by ambipolar diffusion
with initially subcritical or critical mass-to-flux ratios (i.e. µ0 !
1). (ii) The PDF of initial mass-to-flux ratios is broad, in the sense
that µ0 ! 1 is almost as likely as µ0 ! 0.6 (we explain below the
significance of the value µ0 ! 0.6). (iii) The linear analysis we
use to calculate core sizes and masses is adequate to predict the
fragmentation properties of clouds even in a fully nonlinear stage
of evolution. This is supported by comparisons of numerical simu-
lations and predictions from the linear theory (Ciolek & Basu 2006;
Basu et al. 2009).

We then calculate the PDF of core masses P(m̃c) generated from
an assumed PDF of initial mass-to-flux ratios P(µ0) (for a fixed
τ̃ni,0):

P(m̃c) d ln m̃c = µ0P(µ0)
(

∂ ln m̃c

∂ ln µ0

)−1

d ln m̃c, (14)

where m̃c ≡ mc/mT,0. Making the reasonable assumption that
P(µ0) is a uniform distribution of initial mass-to-flux ratios µ0 !
0.1–1.0,P(m̃c) is calculated numerically. (The lower limit on µ0

may be as large as ! 0.6 without changing the high-mass end of the
predicted CMF, see below. Also, other µ0 PDFs, e.g. a Gaussian or
even an inverted Gaussian, give essentially the same CMF, provided
that they are broad enough to include the range 0.5–1.0.)

In Fig. 3, we plot the number of cores N ∝ P(m̃c) (normalized
to unity) versus mc (normalized to the initial thermal critical mass
mT,0) for P̃ext = 0.1 and τ̃ni,0 = 0.162 (dashed line), 0.230 (solid
line) and 0.325 (dotted line). We also give the correspondingα ≡ 1 −
d ln N/d ln mc obtained from a least-square fit to the high-mass end
of each curve. For comparison with observations, we superimpose
data points from SCUBA observations of starless cores in Orion at
450 µm and 850 µm (Nutter & Ward-Thompson 2007). The width
of the mass bins is as in Nutter & Ward-Thompson and is shown as
a horizontal bar for each data point. The vertical error bars denote
the

√
N counting uncertainty due to the number of cores in each

mass bin. In order to match the maximum of the predicted CMF
and that of the observed CMF, we have taken mT,0 ! 2 M'.

Figure 3. Predicted CMF (normalized to the initial thermal critical mass
mT,0) for P̃ext = 0.1 and τ̃ni,0 = 0.162 (dashed line), 0.230 (solid line)
and 0.325 (dotted line). The corresponding power-law exponents α are also
shown. The data are from Nutter & Ward-Thompson (2007) and refer to
starless cores in Orion; see text.

The excellent agreement between theory and observations is ev-
ident. A striking feature of the predicted CMF is its lognormal-like
shape, despite the input uniform distribution of mass-to-flux ratios;
i.e. one does not need a lognormal density distribution in order
to generate a lognormal-like CMF. This is an important distinc-
tion from past work (e.g. by Padoan & Nordlund 2002). Another
important difference is that in our predicted CMF, gravity plays a
central role; in the Padoan & Nordlund CMF, gravity is irrelevant
by assumption.

The predicted CMF has several noteworthy features.

(i) There is a definite mass turnover. The peak dimensionless
mass corresponds to cores that had initial mass-to-flux ratios µ0 !
0.6. This result is insensitive to the free parameters P̃ext and τ̃ni,0.

(ii) The functional form of the predicted CMF is independent of
the minimum initial mass-to-flux ratio µ0,min, provided that µ0,min !
0.6. The low-mass end of the predicted CMF has a slope exactly
equal to unity (i.e. α = 0 for mc ! 0.3 mT,0). The predicted slope
of the high-mass end requires only a near-uniform PDF of initial
mass-to-flux ratios within a factor of ! 2 smaller than critical, a re-
quirement entirely within observational constraints (e.g. see Heiles
& Crutcher 2005).

(iii) There is a correlation between the high-mass slope α and
the maximum core mass mc,max/mT,0, which is shown in Fig. 4.
This relation, however, is only indirect: a smaller (greater) τ̃ni,0

goes hand-in-hand with both a steeper (shallower) high-mass slope
α (Fig. 3) and a greater maximum core mass mc,max/mT,0 (Fig. 2). In
other words, molecular cloud cores that form in regions with rela-
tively large (small) ionization-equilibrium parameter K (∝ ni/n

1/2
n )

should have relatively steeper (shallower) CMFs and relatively
greater (smaller) maximum dimensionless masses.

4 SUMMARY A ND DISCUSSION

We have formulated a novel way of predicting the initial mass func-
tion of molecular cloud cores (CMF), in which magnetic fields and
ambipolar diffusion play a central role. The results are in excel-
lent agreement with observations, provided that the values of the
two important free parameters remain within their observationally

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS

Magnetically-Regulated 

Fragmentation 
(Kunz & Mouschovias 2009)

spirit of Occam, let us consider the latter possibility. If, as
argued elsewhere by Elmegreen (2000a), star formation
essentially happens in a crossing time, then we may indeed
see only one generation of stars being produced at each
scale, rather than the repeated process implied by scaling
with the local dynamical time. The picture thus is one where
a particular MC forms as a consequence of the random
intersection of counterstreaming, supersonic motions (Bal-
lesteros-Paredes, Hartmann, & Vázquez-Semadeni 1999;
Hartmann, Ballesteros-Paredes, & Bergin 2001), internal
turbulence creates the distribution of core masses derived
above, and the cores are then grabbed by gravitation to
form one generation of stars. Energy feedback from stars
subsequently disperses the cloud before the process has time
to repeat.

In the process envisaged above, turbulent fragmentation
is responsible for creating the core mass distribution, while
gravity is only responsible for the collapse of each protostar.
The flattening and the turnaround of the IMF is also easily
accounted for in such a model. While scale-free turbulence
generates a power-law mass distribution down to very small
masses, only cores with a gravitational binding energy in
excess of their magnetic and thermal energy can collapse.
The shape of the stellar IMF is then determined by the PDF
of gas density, that is, by the probability of small cores to be
dense enough to collapse. The mass distribution of collaps-
ing cores derived in the previous section and based on the
lognormal PDF of mass density is indeed consistent with
the observed IMF.

The scaling of the mass where the IMF peaks can be
derived without a knowledge of the PDF of mass density,
using the scaling laws and the definition of the critical mass
for collapse. We first consider the magnetic critical mass,

mB ¼ mB; 0
B

B0

  3 n

n0

  "2

; ð25Þ

wheremB; 0 is the magnetic critical mass at the average num-
ber density n0,

mB; 0 ¼ 8:3 M%
B0

8 lG

  3  
n0

103 cm"3

 "2

; ð26Þ

(McKee et al. 1993). Padoan & Nordlund (1999) have
shown that supersonic and super-Alfvénic turbulence gener-
ates a correlation between gas density and magnetic field
strength, consistent with the observational data. The two
most important properties of such a B-n relation are the
very large scatter and the power-law upper envelope
(B / n0:4). More recently, Padoan et al. (2001b) have com-
puted the magnetic field strength in dense cores produced in
numerical simulations of self-gravitating, supersonic, and
super-Alfvénic turbulence. They found typical field strength
as a function of column density in agreement with new com-
pilations of observational samples by Crutcher (1999) and
Bourke et al. (2001). Here we adopt the following empirical
B-n relation consistent with our previous works:

B ¼ B0
!

!0

  0:5

; ð27Þ

where the exponent is 0.5, and not 0.4 as reported above,
because we now refer to the average values of B inside bins
of n, and not to the upper envelope of the B-n relation,
as above. The slight steepening is due to the fact that the

Fig. 1.—Mass distributions of gravitationally unstable cores from eq.
(24). Top: Mass distribution for different values of the largest turbulent
scale L0, assuming Larson-type relations (for rescaling n0 and MA; 0 with
L0), T0 ¼ 10 K, and " ¼ 1:8.Middle:Mass distribution for different values
of MA; 0, assuming n0 ¼ 500 cm"3, T0 ¼ 10 K, and " ¼ 1:8. Bottom: Mass
distribution for different values of n0, assumingMA; 0 ¼ 10, T0 ¼ 10 K, and
" ¼ 1:8. The mass distribution peaks at approximately 0.4M%, for the val-
ues MA; 0 ¼ 10, n0 ¼ 500 cm"3, T0 ¼ 10 K, and " ¼ 1:8, typical of nearby
molecular clouds.
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The Rate of Core & Star Formation in 

Turbulent and Magnetized Gas

Krumholz & McKee (2005)

In Figure 3 we plot the SFR per free-fall time as a function of
!vir andM for p ¼ 0:5. For convenience, we also fit SFRff by a
power law,

SFRA " 0:014
!vir

1:3

! "#0:68 M
100

! "#0:32

: ð30Þ

Figure 4 shows the error in our power-law fit as a function ofM
and !vir. The error is less than 5% for values of !vir from &0.5
to 3 and M from &10 to 1000. Since real star-forming clouds
generally fall within this range (see x 3), this power law is a rea-
sonably good approximation. One important thing to note about
SFRff is howweakly SFRff varieswithM. Thus, the SFR per free-
fall time in a virialized cloud depends very weakly on the Mach
number of the cloud. This is easy to understand intuitively. At
fixed !vir, increasing M increases xcrit , raising the overdensity
that the gas must reach to collapse. At the same time, however, in-
creasingM increases the width of the PDF, putting a larger frac-
tion of the gas at high overdensities. These two effects nearly
cancel out, which is why changingM at fixed !vir has little effect
on SFRff.

Before proceeding, we must point out one limit of our anal-
ysis.We have assumed that the internal structure ofGMCs follows
the linewidth–size relation.However, theOB star-forming clumps
observed in CS by Plume et al. (1997) do not. They have sub-
stantially higher velocity dispersions than is typical for an object
of their size in their parent GMCs, and their sizes and velocity
dispersions do not appear to be correlated. We interpret these
clumps as regions of a GMC larger than a single core that have
become gravitationally unstable and collapsed to higher surface
densities and pressures than the rest of the GMC (McKee & Tan
2003), increasing their velocity dispersions. The VBK03 simu-
lations that we have used to calibrate our model do not have
enough dynamic range to include the presence of such regions,
so our estimate of SFRff ignores their presence. Fortunately, clumps
of this sort constitute only a tiny fraction of the total molecular
mass of the Galaxy and are even a small fraction of the mass

of their parent GMCs. Thus, the error we have made by ignor-
ing them is negligible on the large scales with which we are
concerned.

3. STAR FORMATION IN GALAXIES

In this section we usually give surface densities in units of
M' pc#2. For convenience, we note that 1 M' pc#2 ¼ 2:1 ;
10#4 g cm#2 ¼ 8:9 ; 1019 hydrogen nuclei cm#2, and 1M' pc#2

corresponds to AV ¼ 0:045 for the local dust-to-gas ratio.

3.1. The Star Formation Law for Galactic Disks

Our formulation applies equally well to galactic disks. The
SFR per unit area of a galactic disk is simply

!̇( ¼
SFRA fGMC!g

tA
" 0:061

!0:68
vir

fGMC!g

M0:32tA

! "
; ð31Þ

where !g is the gas surface density of the disk, fGMC is the frac-
tion of it that is in molecular clouds, and tff andM are the char-
acteristic free-fall times and Mach numbers in the star-forming
regions of the disk. To estimate these quantities, we begin by con-
sidering the mean properties of galactic disks. Note that for gal-
axies like the Milky Way, essentially all the molecular gas is in
GMCs, so fGMC is just the molecular fraction. For starbursts, we
also assume that all the molecular gas is collected into bound
clouds, although this is approximate, as we discuss further in
x 7.1.

Consider star formation in a galactic disk with a total surface
density of !tot. The pressure at the disk midplane is then given
by (cf. Elmegreen 1989; Blitz & Rosolowsky 2004)

Pmp ¼ "mp
#

2
G!g!tot ¼ "mp f

#1
g

#

2
G!2

g ) "P
#

2
G!2

g; ð32Þ

where "mp and "P are constants of order unity and fg ¼ !g /!tot

is the gas fraction in the galaxy. For an isothermal disk consist-
ing entirely of gas, fg ¼ "mp ¼ "P ¼ 1 exactly. For a real galac-
tic disk containing stars, "P > 1 because the gravity of the stars

Fig. 3.—Contours of SFR per free-fall time SFRff vs. !vir and M. The
contours are labeled by values of log SFRA.

Fig. 4.—Contours of the error in our power-law fit for SFRff, defined as error ¼
(Bt# SFRA)/SFRA. The labels on the contours show the value of the error.
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!ff ! M* tff / Mg

.

Based on the fraction of gas in gravitationally bound cores (i.e. above 

some density threshold) given the log-normal distribution of densities 

produced by supersonic turbulence.

6 Padoan and Nordlund

Fig. 3.— The star formation rate per free-fall time versus
the virial parameter according to equation (24), for the HD case
(dashed lines), and the MHD case (solid lines). The solid lines
are for  = 0.45, as in our MHD simulations, and consistent with
OH Zeeman splitting measurements in cloud cores. In both cases,
the three lines are for three different values of the sonic rms Mach
number, M S ,0 = 9, 18, 36, from top to bottom respectively.

of γ = 0.35, as discussed in §2. For αvir < 3 in the MHD
case and αvir < 6 in the HD case, the SFR decreases
with increasing Mach number. The SFR is not very sen-
sitive to the Mach number, because as the Mach number
and the critical density increase, the standard deviation
of the gas density pdf also increases. In the HD case
and in the MHD case with β = 0.45, the dependence is
approximately SFRff ∼ M0.4

S,0 at very low values of αvir,
and becomes weaker at increasing values of the virial pa-
rameter, consistent with Figure 3 in Krumholz & McKee
(2005) and with the power-law approximation in their
equation (30).

As mentioned above, OH and CN Zeeman measure-
ments in molecular cloud cores yield an average value of
β = 0.39, independent of density (Troland & Crutcher
2008; Falgarone et al. 2008). Assuming this observed
value for the postshock β, a value of MS,0 = 25, repre-
sentative of molecular clouds on a scale of approximately
10 pc, and αvir = 1.6, appropriate for average density-
size and velocity-size Larson’s relations, we get an aver-
age value of SFRff ≈ 0.05. If a factor of approximately
0.3 of the mass of a prestellar core goes into the final star,
as suggested by Krumholz et al. (2009), then we predict
an average SFR per free-fall time of approximately 1.5%
in molecular clouds obeying average Larson’s relations,
as typically observed.

6. SFR IN DRIVEN NUMERICAL TURBULENCE

In order to test the SFR model, we have run a set of
simulations of driven supersonic turbulence, on meshes
with 5003- 1, 0003 computational zones. Using the same
methods and setup as in Padoan & Nordlund (2002) and
Padoan & Nordlund (2004) we adopt periodic boundary
conditions, isothermal equation of state, random forcing
in Fourier space at wavenumbers 1 ≤ k ≤ 2 (k = 1 cor-
responds to the computational box size), uniform initial
density and magnetic field, random initial velocity field
with power only at wavenumbers 1 ≤ k ≤ 2. The simu-
lations are all based on two initial snapshots of fully de-
veloped turbulence, one for HD and one for MHD. These
initial snapshots are obtained by running the HD and the

MHD simulations for approximately 5 dynamical times,
on meshes with 1, 0003 computational zones, with the
driving force keeping the rms sonic Mach number at the
approximate value of MS,0 = σv,3D/cS ≈ 9.

In the MHD simulation, the initial magnetic field is
such that the initial value of the ratio of gas to magnetic
pressure is β0 = 22.2. At the time when the gravitational
force is included, the magnetic field has been amplified
by the turbulence, and the value of β defined as β =
2c2

S/(|B|/(4πρ)1/2)2 and averaged over regions with gas
density larger than twice the mean (our definition of the
postshock beta), is β = 0.45. Finally, using the rms
magnetic field and the mean density, we can define a
value of βrms = 0.2, corresponding to an rms Alfvénic
Mach number of MA ≈ 4.

The star formation simulations start when the grav-
itational force is included by specifying a value of the
gravitational parameter. As the gravitational force is
included, the computational mesh is downsized from
1, 0003 to 5003 zones. Table 1 gives the correspond-
ing values of the Jeans length in units of the box size,

LJ/L0 ≈ 1.94 α1/2
vir M

−1
S,0, for all 10 simulations with an

rms sonic Mach number MS,0 = 9 (3 HD runs and 7
MHD runs). The driving force is still active during the
star-formation simulations, in order to achieve a station-
ary value of αvir and a well-defined, constant SFR.

Our simulations represent an intermediate range of
scales. The forcing represents the inertial forcing from
scales larger than the box size. These larger scale mo-
tions have longer turn-over times – and hence longer life
times – than the turn-over times of the scales covered
by the simulations. They act to maintain the kinetic en-
ergy on smaller scales. Without the corresponding driv-
ing, the motions on the scales covered by the simulations
would decay, which would lead to a lowering of the virial
parameter and a corresponding secular increase in the
star formation rate. By maintaining the driving we avoid
the secular evolution and obtain a consistent and nearly
constant star formation rate.

Table 1 also gives the values of the virial parameter,
αvir, assuming the rms Mach number MS,0 = 9. The
virial parameter defined in equation (1) is for a sphere of
uniform density. The simulations are carried out in a cu-
bic domain and generate a highly nonlinear density field;
real star-forming regions have irregular shapes and are
highly fragmented. The virial parameter of the simula-

TABLE 1
Non-dimensional parameters for simulations with rms

sonic Mach number M S ,0 = 9

Run N  L J / L0  v i r SFR  

HD1 1, 0003  5003 ∞ 0.18 0.67 0.59
HD2 1, 0003  5003 ∞ 0.31 2.04 0.13
HD3 1, 0003  5003 ∞ 0.46 4.51 0.02
MHD1 1, 0003  5003 0.45 0.10 0.20 0.42
MHD2 1, 0003  5003 0.45 0.12 0.33 0.30
MHD3 1, 0003  5003 0.45 0.15 0.47 0.24
MHD4 1, 0003  5003 0.45 0.18 0.67 0.17
MHD5 1, 0003  5003 0.45 0.21 0.95 0.11
MHD6 1, 0003  5003 0.45 0.25 1.35 0.06
MHD7 1, 0003  5003 0.45 0.31 2.04 0.03
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Fig. 2.— Pdf of gas density for the MHD and HD snapshots
used as initial conditions for the star-formation simulations (solid
lines). The Log-Normal models used in this work are also shown
(dotted lines).

As mentioned above, in our simulation with MS,0 ≈ 9
and mean Alfvén velocity vA,0 = 0.3 cS (computed with
the mean density and mean magnetic field), we get an
average value of the postshock gas to magnetic pres-
sures equal to β = 0.45 (averaged over all regions with
density larger than twice the mean), and find that this
value is almost independent of density, for densities larger
than the mean. According to our equation (23), in
that super-Alfvénic simulation we should therefore ob-
tain σx,MHD ≈ 2.9. The actual value in the simulation is
2.7 (computed directly from the density field, not from
a fit to the density pdf), very close to the prediction of
our simple model. Figure 2 compares the HD and MHD
model pdfs to the actual pdfs of the snapshots used as
initial conditions for the star-formation simulations. The
MHD model provides an excellent fit to the high den-
sity tail of the pdf, for almost 4 orders of magnitude in
probability. At the highest densities the model predicts
a slightly larger probability, a discrepancy that may be
attributed to the limited numerical resolution. The pdf
from the HD snapshot also lies below the model pdf at
the highest densities.

The compilation of OH and CN Zeeman measurements
by Troland & Crutcher (2008) and Falgarone et al.
(2008) give an average value of β = 0.39, independent
of density (the value is the same in the two samples,
even if the mean gas density of the CN cores is approx-
imately two orders of magnitude larger than that of the
OH cores), in very close agreement with the results of our
super-Alfvénic simulation. Observations give the mag-
netic field and the value of β in dense regions, so the
observational β corresponds to the postshock β defined
here. It would be hard to estimate the mean magnetic
field from observations over a large volume, because the
Zeeman splitting of emission or absorption lines cannot
be detected in low density regions. In numerical simula-
tions of super-Alfvénic turbulence, the rms magnetic field
is the result of the amplification of some weak initial field
by compressions and, possibly, by a turbulent dynamo.
These simulations typically start from an initially uni-
form field, B0, which is also the conserved mean magnetic
field. It would therefore be useful to relate β to the gas
to magnetic pressure computed with the mean magnetic

field, B0, and the mean gas density, ρ0, β0 = 2 c2
S/v2

A,0.
This relation will be studied in a future work, while here
we will only refer to β in our formulae.

5. STAR FORMATION RATE

In Padoan & Nordlund (2004) we computed the mass
fraction available to form brown dwarfs as the integral
of the pdf of gas density from a critical density to in-
finity. In that case the critical density was defined as
the density of a critical Bonnor-Ebert sphere with a
mass of 0.075 M!. Krumholz & McKee (2005) used the
same integral to compute the total mass available for
star formation, and defined the critical density based on
the condition of turbulent support of a Bonnor-Ebert
sphere. Here we follow the same procedure, but our crit-
ical density is defined as the density of a critical Bonnor-
Ebert sphere (or a critical magnetized sphere) of diame-
ter equal to the characteristic postshock layer thickness.
As shown above, our critical density in the HD case has
the same dependence on αvir and MS,0 and almost the
same numerical value as the critical density derived by
Krumholz & McKee (2005).

Assuming that the mass fraction above the critical
density is turned into stars in a free-fall time of the
mean density, ρ0, as in Krumholz & McKee (2005), the
star formation rate per free-fall time (the mass fraction
turned into stars in a free-fall time) is given by:

SFRff =

∫ ∞

xcr

x p(x) dx =
1

2
+

1

2
erf

[

σ2 − 2 ln (ρcr/ρ0)

23/2 σ

]

(24)

where xcr = ρcr/ρ0. The choice of expressing the
SFR with a time unit equal to the free-fall time, in-
troduced in Krumholz & McKee (2005), is useful when
comparing with observational data, because it turns out
that the value of SFRff is approximately the same in
very different star-formation environments, as shown by
Krumholz & Tan (2007).

Because ρcr is derived as an average critical density,
the integral in equation (24) is justified only if the ac-
tual local value of the critical density does not correlate
with the local value of the density. This requires that
local values of postshock layer density, ρ, and thickness,
λ, are not correlated with each other. Both ρ and λ
depend on the local shock velocity, so one may expect
them to have correlated fluctuations around their mean
values. However, the shock velocity varies not only be-
cause of random fluctuations at a fixed scale, but also
because they increase with scale, being approximately
proportional to L1/2. As discussed above, the character-
istic thickness is scale-independent, so the range in shock
velocity introduced by the range in velocity due the scal-
ing does not generate any correlation between the local
density and the local critical density. Therefore, if the
range in shock velocities due to its scaling dominates over
the range in local shock velocity due to fluctuations at
a fixed scale, the mean value of the critical density will
not show any correlation with the local density, and the
integral in equation (24) is justified.

Figure 3 shows the result of equation (24) as a func-
tion of the virial parameter, for three values of the sonic
Mach number, MS,0 = 9, 18, 36, in the MHD case with
β = 0.45, and in the HD case. We have assumed a value



!ff appears to be independent of density
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If !ff is small (~10-2), then high ! star 
clusters need many free-fall times to form 

(tform >> tff ~ few x 105yr)

This is one motivation for models of slow star cluster formation from 

gas clumps in near virial equilibrium (Tan, Krumholz, McKee 2006).

Other evidence for this scenario includes

- Morphologies of gas and young stars

- Momentum flux of protostellar outflows

- Age spreads of pre-main sequence stars

- Estimates of the Orion Nebula Cluster age from ejected stars

However, this issue is still debated 

(see Elmegreen 2007; Hartmann & Burkert 2007). 

Since turbulence decays in ~1tff, to maintain 

turbulent virial equilibrium, momentum must be 

injected into the clump: protostellar outflows.
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Nakamura & Li (2007)

If !ff is small (~10-2), then high ! star 
clusters need many free-fall times to form 



Eventually Ionizing Feedback Will Disperse 
the Clump Gas and Halt Star Formation

!ff=0.02

Tan & McKee 2001

See also Krumholz & Matzner (2009)



From GMCs to Star-forming Clumps:
Star formation is highly clustered: (Lada & Lada 2003; Gutermuth et al. 2009)

Most mass in GMCs has hardly any star formation (!,!ff<<0.01)

Pipe Nebula (Forbrich et al. 2009) 

Mg~104M! 

! ~ 0.0006

!ff ~ 0.0006 (assuming tcloud=1tff)
!
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Correlation of field orientations from ~100pc 

to <1pc scales (Hua-bai Li et al. 2009)

Magnetic fields appear to be strong:

the axis-constrained PCA eigenfunctions to show a clear signa-
ture of velocity anisotropy induced by MHD turbulence.

4. THE TAURUS MOLECULAR CLOUD

The Taurus molecular cloud provides a valuable platform to in-
vestigate interstellar gas dynamics and the star formation process,
owing to its proximity (140 pc) and the wealth of complementary
data. Narayanan et al. (2008) present newwide-field imaging ob-
servations of 12CO and 13CO J ¼ 1 0 emission from the cen-
tral 100 deg2 of the Taurus cloud complex, obtained with the
FCRAO 14 m telescope. The images identify a low column den-
sity substrate of gas that contains subtle streaks of elevated 12CO
emission aligned along the local magnetic field direction as de-
termined from stellar polarization measurements (Heiles 2000).
Images of 12CO J ¼ 1 0 integrated intensity and centroid ve-
locity with measured polarization vectors from this subfield are
shown in Figure 3. These show a connection between the density
and velocity fields.While the origin of these streaks is unknown,
their rigorous alignment with the polarization vectors strongly
suggests that the interstellar magnetic field plays a prominent
role in the gas dynamics of this low-density material.

To assess the degree of velocity anisotropy within this sub-
region of the Taurus molecular cloud, we have applied the axis-
constrained PCA method to the 12CO data from this imaging
survey. The precise field is described by the solid box in Figure 3.
We do not consider the 13CO J ¼ 1 0 data, since the signal is
weak from this low column density sector of the cloud. Themean,
local polarization angle, derived from16measurementswithin the
field, is 52" # 10". Assuming that the polarization is induced by
selective absorption of background starlight by magnetically
aligned, elongated dust grains, this angle corresponds to the local
magnetic field direction (Purcell 1979; Draine 2003). Figure 4
shows the variation of the anisotropy indices, !1 and !2, with
position angle (measured east of north) for 12CO data within this
subfield of the Taurus cloud. For!1, which considers the differ-
ences in scaling exponents, the fitted parameters are!0 ¼ 0:49 #
0:03 and !MAX ¼ 41" # 2". For !2, which measures anisotropy
based on the differences of the normalization constants, !0 ¼
0:56 # 0:03 and !MAX ¼ 46" # 2". The angle of maximum an-
isotropy is within 6"–11" of the local magnetic field direction

and the mean position angle of the emission streaks of 12CO
emission. The x- and y-axis structure functions derived at!MAX ¼
46" are shown in Figure 5. These distributions show the same
pattern of offsets between the parallel and perpendicular struc-
ture functions measured in the strong-field simulation snapshots
(B2, B3) shown in Figure 2. For the Taurus field, the power-law
index of the structure function derived from 12CO along the
x-axis (i.e., the direction aligned with the polarization) is steeper
(0:81 # 0:05) than the index of the y-axis structure function
(0:34 # 0:06). The steeper power law along the x-axis is indi-
cative of a velocity field more dominated by large scales. Similar
to the model structure functions in the strong magnetic field
cases, the normalization of the y-axis structure function, v0; y, is
0.08 km s$1 and larger than the value of the x-axis structure func-
tion (v0; x ¼ 0:02 km s$1). Thus, the smooth variation of density
along the presumed magnetic field is mirrored by a smooth vari-
ation in the velocity, and the stronger variation in density in the
perpendicular direction (streakiness) is mirrored by a stronger
variation in the velocity. Indeed, preliminary analysis shows that
in the direction perpendicular to the projected magnetic field,
displacements between the peaks in integrated intensity and ve-
locity centroids are similar with typical values 0.2–0.4 pc.

The results shown in Figures 3, 4, and 5 are suggestive of
velocity anisotropy induced by strong MHD turbulence, as de-
scribed byGS95 and verified by computational simulations (Cho
et al. 2002; Vestuto et al. 2003). We note that the observed spec-
tral slope parallel to the field, "k, is steeper than the value pre-
dicted for incompressibleMHD turbulence byGS95 but is similar
to values derived for the strong-field (B2, B3) simulations. Veloc-
ity anisotropy could be produced by processes other than MHD
turbulence. A systematic flow of material that is ‘‘channeled’’ by
the magnetic field may also generate differences in the parallel
and perpendicular structure functions. Such large-scale gradients
would produce steep spectral indices (" % 1). However, the ob-
served high-frequency variation of velocities perpendicular to
the field is not characteristic of such large-scale shear flows.
Regardless of its origin, the near alignment of the velocity anisot-
ropy with the local magnetic field direction demonstrates the
importance of the interstellar magnetic field to the gas dynamics
within this low-density component of the Taurusmolecular cloud.

Fig. 3.—(Left) Image of 12CO J ¼ 1 0 emission of a subfield within the Taurus molecular cloud integrated over the velocity interval 5.5–7.5 km s$1 and (right)
image of 12CO velocity centroid (Narayanan et al. 2008), with overlay of optical polarization vectors from the compilation by Heiles (2000). The molecular line emis-
sion and velocities exhibit streaks that are aligned along the localmagnetic field direction. The solid line box outlines the area onwhich the axis-constrained PCAmethod is
applied. The dotted-line box shows the area within which the polarization angles are averaged to estimate the mean magnetic field direction.
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Taurus (Heyer et al. 2008)

Magnetic critical mass
(Mouschovia & Spitzer 1976; 
Bertoldi & McKee 1992)



From GMCs to Star-forming Clumps: IRDCs

Variety of morphologies: filamentary to 

near spherical.

Mass estimates from MIR extinction 

mapping, CO emission, and assuming virial 

equilibrium are in reasonable agreement.

Relatively narrow distribution of centroid 

velocities of “cores”.

Distribution of mass surface densities 

indicates Mach no. of turbulence <~5 

and/or relatively strong B-fields.

Butler & Tan (2009); Hernandez & Tan, in prep.



Distribution of M with !/!

Mach 4.7 
turbulence, 

no self-gravity 
or B-fields

Mach 4.9 self-
gravitating 

driven 
turbulence, no 

B-fields

10 IRDCs

Simulations (Offner et al. 2008; Nakamura & Li 2007)

Protostellar outflow driven turbulence 
viewed parallel & perpendicular to B-field

Relatatively narrow IRDC 

distributions suggest 

either Mach numbers <5 

and/or dynamically 

strong magnetic fields.



What drives galactic-scale star formation?

What is the rate limiting step?
Empirical: $g=1.4+-0.15 Molecular-dominated regions (Kennicutt 1998)
Theoretical: growth of large scale grav. instabilities (for constant 
scaleheight disks) (Larson 1988; Elmegreen 1994; Wang & Silk 1994)

Empirical: normal spirals (Leroy et al. 2008; Bigiel et al. 2008)
Theoretical: GMC properties independent of galactic environment; 
constant density, constant !ff. Cannot hold in starburst regime.

Krumholz & McKee (2005): GMCs are virialized and 
their surfaces in pressure equilibrium with Q~1 disk.

Krumholz, McKee, Tumlinson 
(2009): GMCs are virialized and their 
surfaces in pressure equilibrium 
with Q~1 disk for high #g regime. 
Pressure set by internal feedback in 
low #g regime.

Empirical: molecular dominated regions (Kennicutt 1998)
Theoretical: Spiral arm passage; swing amplifier (Wyse & Silk 1989)

Theoretical: GMC collisions in a shearing, 
thin, molecular-dominated, Q~1 disk (Tan 
2000) 



Why GMC collisions can be important for 

driving galactic SFRs:
In the molecular-dominated regions, the rate limiting step for star 

formation should be the creation of star-forming clumps in GMCs, rather 

than the formation of GMCs themselves. (In the atomic-dominated 

regions, it can also depend on the formation of GMCs from the CNM and/

or WNM.)

Converging flows of dense gas are a natural mechanism to create high 

density regions. In the molecular-dominated regime, these converging 

flows will often result from GMC-GMC collisions (Scoville et al. 1986; Tan 

2000). 

Spiral density waves will concentrate this process, but are not necessary. 

Compressions can also result from gravitational instability; internal GMC 

turbulence; HII region and supernova feedback.

-Dependence of SFRs on galactic shear. GMC collisions are 

driven by shear.

-Dispersion in GMC star formation efficiencies

-Disturbed kinematics or GMCs, especially around IRDCs



Dependence of SFRs on shear rate: GMC collisions are 

driven by shear.

20kpc

Tasker & Tan (2009): ENZO AMR 3D Hydro Atomic Cooling



Empirical Effect of Shear on "sfr

#sfr = B #g !(1-0.7%)

Data from Leroy et al. (2008)

#sfr = B #g !
Observed #sfr

Tan (2009)
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Fig. 2.— Ratio, Rsfr, of predicted to observed star formation rate surface densities for the entire sample of disk galaxies, offset from each
other for clarity: the dotted lines indicate Rsfr = 1 for each galaxy. The line styles are as in Figure 1.
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ABSTRACT

We use observations of the radial profiles of the mass surface density of total, Σg, and molecular, ΣH2,
gas, rotation velocity and star formation rate surface density, Σsfr, of the molecular dominated regions
of 12 disk galaxies from Leroy et al. to test several star formation laws: a “Kennicutt power law”, Σsfr =
AgΣ1.5

g,2; a “Constant molecular law”, Σsfr = AH2ΣH2,2; the “Turbulence-regulated laws” of Krumholz &
McKee (KM) and Krumholz, McKee & Tumlinson (KMT), a “Kennicutt Ω law”, Σsfr = BΩΣgΩ; and
a shear-driven “GMC collisions law”, Σsfr = BCCΣgΩ(1 − 0.7β), where β ≡ d ln vcirc/d ln r. We find
the constant molecular law, KMT turbulence law and GMC collision law are the most accurate, with
an rms error of a factor of 1.5 if the normalization constants are allowed to vary between galaxies. Of
these three laws, the GMC collision law does not require a change in physics to account for the full range
of star formation activity seen from normal galaxies to circumnuclear starbursts. A single global GMC
collision law with BCC = 8.0× 10−3, i.e. a gas consumption time of 20 orbital times for β = 0, yields an
rms error of a factor of 1.8.
Subject headings: stars: formation — galaxies: evolution

1. introduction

Understanding the rate at which stars form from gas is of fundamental importance for a theory of galaxy evolution. At
the moment it is uncertain what physical process or processes drive star formation rates (SFRs). Locally, we know star
formation occurs mostly in highly clustered, ∼parsec-scale regions within giant molecular clouds (GMCs) (Lada & Lada
2003; Gutermuth et al. 2009). This clustered mode appears to also be important in a wide range of galactic environments,
including dwarf irregular galaxies (Dowell, Buckalew, & Tan 2008), normal disk galaxies (Larsen 2009), and starburst
galaxies (Fall et al. 2005; McCrady & Graham 2007). The total efficiency, ε, of conversion of gas into stars in these
clusters is relatively high, with ε ∼ 0.1 − 0.5. However, on the scale of GMCs star formation occurs at a relatively slow,
inefficient rate, such that only a few percent of the GMC mass is converted to stars per free-fall time (Zuckerman & Evans
1974; Krumholz & Tan 2007). Although GMCs appear to be gravitationally bound and virialized (Solomon et al. 1987;
Bolatto et al. 2008), at any given time, most of the mass and volume of GMCs is not forming stars, perhaps because it
is magnetically subcritical (e.g. Heyer et al. 2008).

Starting with the pioneering work of Schmidt (1959, 1963), empirical correlations have been found between the disk
plane surface density of SFR, Σsfr, and the surface density of gas — either the total, Σg, or just that in the molecular
phase, ΣH2. Based on about 100 disk averages of nearby galaxies and circumnuclear starbursts, Kennicutt (1998, hereafter
K1998) found

Σsfr = AgΣ
αg

g,2, (1)

with Ag = 0.158 ± 0.044 M" yr−1 kpc−2, Σg,2 = Σg/100M"pc−2, and αg = 1.4 ± 0.15. Most of the dynamic range
determining this relation covers the molecular dominated conditions of the disks in the centers of normal galaxies and in
starbursts. Kennicutt et al. (2007) found a similar relation applied on ∼kpc scales in M51a. Theoretical and numerical
models that relate the SFR to the growth rate of large scale gravitational instabilities in a disk predict αg % 1.5 (e.g.
Larson 1988; Elmegreen 1994, 2002; Wang & Silk 1994; Li, Mac Low, & Klessen 2006), as long as the gas scale height
does not vary much from galaxy to galaxy. However, the growth rate of large scale instabilities that lead to the formation
of GMCs cannot be the rate limiting step for star formation in disks that already have most of their gas mass in the
molecular phase in the form of gravitationally bound GMCs. Rather, one should consider the processes that create the
actively star-forming, presumably magnetically supercritical, parsec-scale clumps of gas within GMCs, which then become
star clusters.

Based on a study of 12 nearby disk galaxies at 800 pc resolution, Leroy et al. (2008) (see also Bigiel et al. 2008)
concluded that

Σsfr = AH2ΣH2,2, (2)

with AH2 = (5.25 ± 2.5) × 10−2 M"yr−1 kpc−2 and ΣH2,2 = ΣH2/100M"pc−2. The values of ΣH2 covered a range from
∼ 4−100M"pc−2. They suggest these results indicate that GMCs in these galaxies have approximately uniform properties,
e.g. density, and thus are forming stars at a constant rate per free-fall time, as is expected if they are supersonically
turbulent (Krumholz & McKee 2005, hereafter KM2005). However, to explain the K1998 data for higher Σg systems
would require a change in the cloud properties to allow them to form stars at a faster rate.
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ABSTRACT

We use observations of the radial profiles of the mass surface density of total, Σg, and molecular, ΣH2,
gas, rotation velocity and star formation rate surface density, Σsfr, of the molecular dominated regions
of 12 disk galaxies from Leroy et al. to test several star formation laws: a “Kennicutt power law”, Σsfr =
AgΣ1.5

g,2; a “Constant molecular law”, Σsfr = AH2ΣH2,2; the “Turbulence-regulated laws” of Krumholz &
McKee (KM) and Krumholz, McKee & Tumlinson (KMT), a “Kennicutt Ω law”, Σsfr = BΩΣgΩ; and
a shear-driven “GMC collisions law”, Σsfr = BCCΣgΩ(1 − 0.7β), where β ≡ d ln vcirc/d ln r. We find
the constant molecular law, KMT turbulence law and GMC collision law are the most accurate, with
an rms error of a factor of 1.5 if the normalization constants are allowed to vary between galaxies. Of
these three laws, the GMC collision law does not require a change in physics to account for the full range
of star formation activity seen from normal galaxies to circumnuclear starbursts. A single global GMC
collision law with BCC = 8.0× 10−3, i.e. a gas consumption time of 20 orbital times for β = 0, yields an
rms error of a factor of 1.8.
Subject headings: stars: formation — galaxies: evolution

1. introduction

Understanding the rate at which stars form from gas is of fundamental importance for a theory of galaxy evolution. At
the moment it is uncertain what physical process or processes drive star formation rates (SFRs). Locally, we know star
formation occurs mostly in highly clustered, ∼parsec-scale regions within giant molecular clouds (GMCs) (Lada & Lada
2003; Gutermuth et al. 2009). This clustered mode appears to also be important in a wide range of galactic environments,
including dwarf irregular galaxies (Dowell, Buckalew, & Tan 2008), normal disk galaxies (Larsen 2009), and starburst
galaxies (Fall et al. 2005; McCrady & Graham 2007). The total efficiency, ε, of conversion of gas into stars in these
clusters is relatively high, with ε ∼ 0.1 − 0.5. However, on the scale of GMCs star formation occurs at a relatively slow,
inefficient rate, such that only a few percent of the GMC mass is converted to stars per free-fall time (Zuckerman & Evans
1974; Krumholz & Tan 2007). Although GMCs appear to be gravitationally bound and virialized (Solomon et al. 1987;
Bolatto et al. 2008), at any given time, most of the mass and volume of GMCs is not forming stars, perhaps because it
is magnetically subcritical (e.g. Heyer et al. 2008).

Starting with the pioneering work of Schmidt (1959, 1963), empirical correlations have been found between the disk
plane surface density of SFR, Σsfr, and the surface density of gas — either the total, Σg, or just that in the molecular
phase, ΣH2. Based on about 100 disk averages of nearby galaxies and circumnuclear starbursts, Kennicutt (1998, hereafter
K1998) found

Σsfr = AgΣ
αg

g,2, (1)

with Ag = 0.158 ± 0.044 M" yr−1 kpc−2, Σg,2 = Σg/100M"pc−2, and αg = 1.4 ± 0.15. Most of the dynamic range
determining this relation covers the molecular dominated conditions of the disks in the centers of normal galaxies and in
starbursts. Kennicutt et al. (2007) found a similar relation applied on ∼kpc scales in M51a. Theoretical and numerical
models that relate the SFR to the growth rate of large scale gravitational instabilities in a disk predict αg % 1.5 (e.g.
Larson 1988; Elmegreen 1994, 2002; Wang & Silk 1994; Li, Mac Low, & Klessen 2006), as long as the gas scale height
does not vary much from galaxy to galaxy. However, the growth rate of large scale instabilities that lead to the formation
of GMCs cannot be the rate limiting step for star formation in disks that already have most of their gas mass in the
molecular phase in the form of gravitationally bound GMCs. Rather, one should consider the processes that create the
actively star-forming, presumably magnetically supercritical, parsec-scale clumps of gas within GMCs, which then become
star clusters.

Based on a study of 12 nearby disk galaxies at 800 pc resolution, Leroy et al. (2008) (see also Bigiel et al. 2008)
concluded that

Σsfr = AH2ΣH2,2, (2)

with AH2 = (5.25 ± 2.5) × 10−2 M"yr−1 kpc−2 and ΣH2,2 = ΣH2/100M"pc−2. The values of ΣH2 covered a range from
∼ 4−100M"pc−2. They suggest these results indicate that GMCs in these galaxies have approximately uniform properties,
e.g. density, and thus are forming stars at a constant rate per free-fall time, as is expected if they are supersonically
turbulent (Krumholz & McKee 2005, hereafter KM2005). However, to explain the K1998 data for higher Σg systems
would require a change in the cloud properties to allow them to form stars at a faster rate.

1

2

KM2005 extended their model of turbulence-regulated star formation to predict galactic star formation rates by assuming
GMCs are virialized and that their surfaces are in pressure equilibrium with the large scale interstellar medium (ISM)
pressure of a Toomre (1964) Q ! 1.5 disk, predicting

Σsfr = AKMfGMCφ0.34
P̄ ,6 Q−1.32

1.5 Ω1.32
0 Σ0.68

g,2 , (3)

with AKM = 9.5M" yr−1 kpc−2, fGMC the mass fraction of gas in GMCs, φP̄ ,6 the ratio of the mean pressure in a GMC
to the surface pressure here normalized to a fiducial value of 6 but estimated to vary as φP̄ = 10− 8fGMC, Q1.5 = Q/1.5,
and Ω0 being Ω, the orbital angular frequency, in units of Myr−1. We will assume fGMC = ΣH2/Σg based on resolved
studies of GMC populations and molecular gas content in the Milky Way and nearby galaxies (Solomon et al. 1987; Blitz
et al. 2007).

Krumholz, McKee & Tumlinson (2009a, hereafter KMT2009) presented a two component star formation law

Σsfr = AKMTfGMCΣg,2 ×

{

(

Σg/85M"pc−2
)−0.33

, Σg < 85 M"pc−2

(

Σg/85M"pc−2
)0.33

, Σg > 85 M"pc−2

}

(4)

with AKMT = 3.85×10−2M"yr−1 kpc−2. GMCs are assumed to be in pressure equilibrium with the ISM only in the high
Σg regime. At low regime, GMCs are assumed to have constant internal pressures set by H II region feedback (Matzner
2002).

K1998 showed that, in addition to being fit by eq. (1), his galaxy and circumnuclear starburst data could be just as
well described by

Σsfr = BΩΣgΩ (5)

where BΩ = 0.017 and Ω is evaluated at the outer radius that is used to perform the disk averages. Equation (5) implies
that a fixed fraction, about 10%, of the gas is turned into stars every outer orbital timescale of the star-forming disk
and motivates theoretical models that relate star formation activity to the dynamics of galactic disks. Such models are
appealing as their predicted star formation activity per unit gas mass, i.e. the gas consumption time, is self-similar,
depending only on the local orbital time. Examples of these models include those in which star formation is triggered by
passage of gas through spiral density waves (e.g. Wyse & Silk 1989). However, there is no evidence that galactic SFRs
depend on density wave amplitude (e.g. Kennicutt 1989). Rather, where present, density waves simply help organize gas
and star formation within a galaxy.

Noting that in the main star-forming parts of galactic disks a large fraction of total gas is associated with gravitationally
bound GMCs and that most stars form in clustered regions in these clouds, Tan (2000, hereafter T2000) proposed a model
of star formation triggered by GMC collisions in a shearing disk, which reproduces eq. (5) in the limit of a flat rotation
curve since the collision time is found to be a short and approximately constant fraction, ∼ 20%, of the orbital time, torbit.
The collision times of GMCs in the numerical simulations of Tasker & Tan (2009) confirm these results. The T2000 model
assumes a Toomre Q parameter of order unity in the star-forming part of the disk, a significant fraction (e.g. ∼ 1/2) of
total gas in gravitationally bound clouds, and a velocity dispersion of these clouds set by gravitational scattering (Gammie
et al. 1991). Then, the predicted SFR is

Σsfr = BCCQ−1ΣgΩ(1 − 0.7β), (β % 1) (6)

where β ≡ d ln vcirc/d ln r and vcirc is the circular velocity at a particular galactocentric radius r. Note β = 0 for a flat
rotation curve. There is a prediction of reduced SFRs compared to eq. (5) in regions with reduced shear, i.e. typically
the inner parts of disk galaxies.

Leroy et al. (2008) (see also Wong & Blitz 2002; Bigiel et al. 2008) examined the applicability of the above star
formation laws for the galaxies in their sample. In this Letter we revisit this issue, concentrating on the radial profiles of
the molecular dominated regions of the 12 disk galaxies studied by Leroy et al.

2. methodology

We consider the data on Σsfr, Σg, ΣH2, Ω and β for the 12 large disk galaxies (see Table 1) analyzed by Leroy et al.
(2008), and we refer the reader to this paper for the details of how these quantities were estimated. Note that Ω and β
depend on the estimated rotation curves of the galaxies. The Leroy et al. (2008) analysis uses analytic fits to the observed
rotation curves, since the derivatives of the actual observed curves can be very noisy.

We only consider regions where the molecular gas dominates over atomic, i.e. ΣH2 > ΣHI, since it is here that we
expect a significant fraction of the total gas to be associated with gravitationally bound clouds — an assumption of the
T2000 and KM2005 theories — and since we also wish to avoid regions affected by star formation thresholds (Martin &
Kennicutt 2001). This requirement defines an outer radius, rout, for each galaxy. Note that NGC 2841 has no detected
gas in its central region out to about 3.5 kpc, so we only consider annuli from this radius out to rout for this galaxy. The
requirement that ΣH2 > ΣHI also leads us to exclude analysis of the 11 H I dominated, low-mass galaxies in the Leroy et
al. (2008) sample, which have only upper limits on ΣH2.

We use these data to compare the predicted Σsfr,theory from: a “Kennicutt power law” with αg = 1.5 (eq. 1); a
“Constant molecular law” (eq. 2); a “KM2005 turbulence-regulated law” (eq. 3); a “KMT2009 turbulence-regulated law”
(eq. 4) a “Kennicutt Ω law” (eq. 5); and a “GMC collision law” (eq. 6), with the observed values, Σsfr,obs, averaged
in annuli of typical width ∼ 500 pc. For each galaxy and each star formation law we derive the best fit values of Ag,
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(2008), and we refer the reader to this paper for the details of how these quantities were estimated. Note that Ω and β
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Omega law:

Constant molecular law:

GMC collisions law:
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Krumholz-McKee-Tumlinson (2009) turbulence law

These laws predict the radial profiles 

with an RMS error of a factor of 1.5

8.0x10-3, !cc =0.02 A single value of BCC=8x10-3 predicts 

SFRs to RMS error of factor of 1.8

Kennicutt 1998

Tan (2009)



To what scale is the Schmidt-
Kennicutt law valid?

! Correlation evident 
in 1kpc, 500pc

! Becomes looser 
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resolution
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Solomon (1988) for 

Galactic GMCs.

Turbulence-regulated law should predict a 

correlation of !sfr with !H2 in GMCs with 

smaller dispersion for more massive clouds? 

Dispersion in GMC Star Formation Efficiencies
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Implications of Frequent GMC Collisions

Frequent mergers can 

explain the retrograde 

rotation of GMCs with 

respect to galactic rotation.
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ALMA Opportunity

Measure the GMC mass function down to ~104M
!

 in a 

range of galactic environments.

Measure GMC kinematics: virial parameters, rotation 

directions. Find the precursors to star-forming clumps.

HST optical (Vallejo et al. 2002)

Nobeyama CO(1-0)
(Sakamoto et al. 1999)

Predicted CO with 
ALMA 0.3” beam

(Narayanan, Tasker, Tan, in prep.)
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We adopt a galactic CO-to- conversion factorH2X \ 3.0 ] 1020 cm~2 (K km s~1)~1 (Scoville et al. 1987 ;

Solomon et al. 1987 ; Strong et al. 1988). The factor of 1.36
accounts for elements other than hydrogen (Allen 1973). No
correction for missing Ñux was applied unless otherwise
noted.

The adopted conversion factor was determined for giant
molecular clouds in the Galactic disk. It may be di†erent in
the regions observed here, as mentioned earlier. For
example, the conversion factor may depend on metallicity
(Maloney & Black 1988 ; Wilson 1995 ; Arimoto, Sofue, &
Tsujimoto 1996). We found metallicity data for eight gal-
axies in our sample in the data compiled by Vila-Costas &
Edmunds (1992) and by Zaritsky, Kennicutt, & Huchra
(1994). The metallicity at the galactic centers, extrapolated
from measurements in the disks, ranges from 12]log
(O/H) \ 9.1È9.5 with a mean of 9.33. The mean value is
consistent with what is expected from the mean luminosity

NGC 4414 at 19.2 Mpc



Conclusions:
From cores to stars: CMF & IMF similarities are intriguing. Pre-stellar 
cores appear to be in near virial & pressure equilibrium. Massive cores must 
be supported by B-fields and/or turbulence. Outflows likely set the core 
SFE. ALMA will resolve core and disk fragmentation and core disruption.

From clumps to cores: Fragmentation regulated by turbulence and/or B-
fields can reproduce observed CMF. Competitive accretion does not produce 
the high-mass end of CMF. ALMA will measure the CMF, surrounding gas 
kinematics, and B-fields in a range of environments to test these models. 

From clumps to star clusters: Small SFEs per free-fall time, !ff~0.01-0.05. 
Clusters forming with high SFE, !~0.5, must take many free-fall times to form. 
Turbulence must be maintained in the clump, likely by protostellar outflows.

From GMCs to clumps & star clusters: GMC SFEs per free-fall time are 
small, !ff~0.01. Star formation is highly clustered. Most GMC mass has !,!ff 

<<0.01, perhaps because of magnetic support. Converging flows, many 
from GMC collisions, may initiate star cluster formation by producing 
magnetically supercritical clumps. Study of GMC kinematics around IRDCs 
can help test this idea. ALMA can extend these studies to nearby galaxies.

From galaxies to star clusters: In molecular-dominated regions, most gas is 
in GMCs - their formation from atomic gas is not likely to be the rate limiting 
step for star formation. Self-regulation by star formation feedback should 
lead to Q~1 disks, with significant gas mass in bound clouds. Spiral arms do 
not appear to enhance global SFRs. Models of star formation regulated by 
turbulence or cloud collisions can explain observed SFRs. Distinguish by 
dependence on galactic shear, and the dispersion of GMC SFEs. 


