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QUANTUM WELL MULTIPLIERS: TRIPLERS AND QUINTUPLERS
M. A. Frerking

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Quantum well devices are a promising new type of non-linear device for harmonic
generation in the millimeter and submillimeter wave regime. Two types of non-linear impedances
have been employed for harmonic generation: the varactor with a non-linear capacitance-voltage
characteristic and the varistor with a non-linear current-voltage (I-V) relationship. The harmonic
generation efficiency of the varactor theoretically exceeds that for a varistor since an ideal varactor
suffers no resistive losses. However, above about 400 GHz, currently available varistors are more
efficient because they have considerably higher cutoff frequencies. The maximum conversion
efficiency to the nth harmonic for an ideal varistor with a monotonically increasing I-V
characteristic has been shown to be 1/n2 [1,2]. The quantum well double barrier diode is a varistor
which exhibits a negative resistance in its I-V curve at frequencies as high as 2.5 THz [3]. Since its
I-V curve is no longer monotonically increasing, it can generate harmonics with higher efficiency
than the 1/n2 limit. Tripling to 200 GHz has been demonstrated with these devices with output

powers in excess of 200 uW [4,5, viewgraph 6 (VG-6)]. The capacitance - voltage characteristic
of these devices is also highly non-linear and may provide efficient varactor operation. Theoretical
analysis yields high efficiencies for tripling and quintupling of GaAs/AlAs and InGaAs/AlAs
quantum well devices with optimized embedding impedances.

A quantum well resonant tunneling diode (RTD) is formed of two thin layers of a material
with a high energy band gap on either side of a lower energy gap material. As shown in VG-2 this
structure has a potential energy distribution consisting of a potential well sandwiched between two
barriers. In such a structure a bound state can occur. When no voltage is applied to the RTD, no
current flows. As the voltage is increased across the device electrons tunnel through the barriers.
When the voltage equals that of the bound state resonant tunneling occurs greatly enhancing the
current. As the voltage increases further, the resonance is passed and the current drops. When the
voltage exceeds the barrier height the current again increases. Since the RTD structure is
symmetric the I-V curve is antisymetric about zero voltage.

Thin barrier RTDs are very fast devices. The charge-transport time can be less than 100 fs,
while the intrinsic parasitics are low. Current densities as high as 2 x 105 A/cm2 have been

achieved [6] and the specific capacitance of 0.1 pF/cm?2 is comparable to high speed GaAs
Schottky barrier diodes.

Frequency multiplication using these devices was first suggested by Sollner [7]. The shape
of the I-V curve suggest that there should be large harmonic content to the current waveform, and
the antisymmetry implies that only odd harmonics should be present. The differential negative
resistance allows efficiency greater than 1/n2 the limit for monotonically increasing I-V curves.

To design a multiplier using a quantum well RTD as the non-linear device, a large signal
analysis was carried out using a modified version of GISSMIX [8, VG-8] to optimize terminations
at the various harmonics. The large signal analysis was carried out at three output frequencies; DC,
183 GHz, and 1000 GHz. In addition three quantum well RTD devices were modelled; one
GaAs/AlAs RTD and two InGaAs/AlAs RTDs. The device details are summarized in the VG-10,
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VG-11, and VG-12.

At DC, where parasitics can be ignored so that the RTD is operating in a purely varistive
mode, the 3rd and 5th harmonics had comparable efficiencies; 2.5% for the GaAs/AlAs RTD and
7% for the InGaAs/AlAs RTD [VG-15, VG-16].

To verify the large signal theoretical analysis, measurements of multiplication efficiency
were also performed at low frequencies. The agreement between experiment and theory is
excellent, not only for the 3rd and 5th harmonics, but also for the 7th, 9th / and 11th harmonics [VG-
15].

In the submillimeter wavelength regime, the effect of parasitics is critical. The two most
important parasitics are the series resistance and the shunt capacitance [VG-17]. The series
resistance arises from the ohmic contact, the resistance of the undepleted epilayers on both sides of
the double barrier structure, and spreading resistance from the mesa into the much wider substrate
material. The voltage variable capacitance occurs in the depletion region. The functional form
indicated in VG-17 is a simple solution to Poisson's equation. C;, is the capacitance of the double
barrier structure when no voltage is applied.

For varistor operation to dominate, the time averaged impedance due to the capacitance
must be less than the resistive impedance of the quantum well device. These limits are shown
graphically in VG-18. The resistive impedance of the device depends on the detailed shape of the I-
V curve and the voltage swing of the pump power. For the devices we have tested, it is in the
range 100 - 300 Qs. An average capacitance of less than 5 fF is required for varistor operation at
100 GHz while an average capacitance of less than 1 fF is needed for varistor operation at 1000
GHz.

The predicted voltage variable capacitance of the quantum well device is highly non-linear,
suggesting that these devices may perform extremely well as varactors. VG-20 and VG-21 show
the predicted performance of the InGaAs/AlAs RTD at three frequencies, DC, 183 GHz, and 1000
GHz. At DC the device is operating in the purely varistor mode whereas at 183 GHz it is
functioning primarily as a varactor. The 5th harmonic generation efficiency is greater at 183 GHz
(about 25%) than at DC (about 7 %) since varactor operation allows the build up of higher
instantaneous current in the device. This can be seen by comparing the current waveforms at DC
(VG-13) and at 183 GHz (VG-19). At 1000 GHz the series resistance is limiting the performance
as a varactor yielding lower efficiencies.

With the existing GaAs/AlAs and InGaAs/AlAs RTDs, power levels on the order of 0.25 to
0.5 mW can be generated at the 5th harmonic when provided the proper embedding circuit. The
output power scales with current density. Current densities almost an order of magnitude higher
have recently been demonstrated in the new material system InAs/GaAlSb [6].

In summary, quantum well devices are a promising new millimeter and submillimeter wave
frequency multiplier device. They can be optimized to maximize performance as a high order
harmonic generator. In particular 5th order harmonic generation is very efficient. Since their
inherent symmetry produces only odd harmonics, circuit design is greatly simplified. We have
verified varistor multiplication at very low frequencies by comparing large signal theoretical
analysis with experimental measurement. Understanding the parasitics is critical to optimizing for
high frequency performance. The voltage variable capacitance of quantum well devices may in fact
make them a very good candidate varactor.
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LOW FREQUENCY VERIFICATION
THEORY AND MEASUREMENT

GaAs/AlAs RTD
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