# Millimeter-Wave Double-Dipole Antennas for High Efficiency Reflector Illumination

D.F. Filipovic, W.Y. Ali-Ahmad and G.M. Rebeiz

NASA/Center for Space Terahertz Technology Electrical Engineering and Computer Science Department University of Michigan Ann Arbor, MI 48109-2122

An earlier version of this paper has been presented at the 15'th Intl. Conference of Infrared and Millimeter-Waves, Dec, 1990.

#### ABSTRACT

A double-dipole antenna integrated on a thin dielectric membrane and backed by a large ground plane is presented. The double-dipole design results in nearly equal E and H-plane patterns with a gain of 12-13 dB, a cross-polarization levels lower than -27 dB, and a mainbeam efficiency of 90%. The input impedance is around 50 $\Omega$  and will match well to a Schottky-diode or SIS detector. Pattern measurements at 234 GHz, 246 GHz and 258 GHz agree well with theory. The double-dipole antenna is a simple antenna to fabricate with a very low cross-polarization component, and is useful for millimeter and submillimeter-wave applications requiring a  $\pm 5\%$  bandwidth.

## I. INTRODUCTION

The use of thin dielectric membranes for millimeter-wave integrated-circuit antennas is now a well established technique for high-efficiency designs [1,2]. The membranes are very thin compared to a free-space wavelength, and the antennas do not suffer from dielectric and substrate-mode losses. It is possible to integrate a radiating structure consisting of two dipole antennas on a dielectric membrane and backed by a ground plane that results in equal E and H-plane patterns and a very low cross-polarization component (Fig. 1). Double-dipole antennas have been previously investigated at millimeter-wave frequencies and have showed promise for high-efficiency applications [3,4]. The detector is integrated at the center of the coplanar stripline. A low-pass filter is used to isolate the IF/bias lines from the antenna. The double-dipole antenna is very simple to fabricate, and results in similar directivities to the integrated-horn antenna and with a high coupling efficiency to f/0.7-f/0.9 reflector systems.

### **II. DOUBLE-DIPOLE ANTENNA DESIGN**

The antennas are integrated on a thin dielectric membrane and it is therefore possible to use free-space radiation techniques. The antennas have the same current distribution due to

the detector position and symmetry. For far-field pattern calculations, the antenna current distribution is given by the standing-wave current on an open-circuited transmission line. The method of images is used to account for the ground plane [4]. An optimization program was written to yield nearly equal E and H-plane patterns by changing the antenna lengths (l), the antenna spacing (d) and the membrane position from the ground plane (h). The dipole input impedance is found by assuming a more exact current distribution [5] and taking into account the mutual impedance effects between the antennas and their images. The dipole impedance is then transformed using transmission-line theory to the detector terminals. The double-dipole antenna input impedance is half the transformed impedance due to the parallel combination of the two dipoles. The coplanar-stripline characteristic impedance  $(Z_{cps})$  is chosen to yield a final input impedance around  $50\Omega$ . It is possible to add a short coplanar stub along the transmission-line for impedance tuning considerations.

# **III. THEORETICAL AND EXPERIMENTAL RESULTS**

A double-dipole antennas with parameters  $(l, d, h, Z_{cps})$  of  $(0.7\lambda, 0.55\lambda, 0.77\lambda, 300\Omega)$  was build for 246 GHz applications. The design yields nearly equal E, H and 45°-plane patterns with a 10-dB beamwidth of 78° and 70°, and a directivity of 11.7 dB, respectively. The measured input impedance on a 2 GHz microwave model is  $50\Omega$  for a  $\pm 5\%$  bandwidth (Fig. 2). The measured patterns agree quite well with theory up to  $45^{\circ}$  (Fig. 3) where diffraction effects from the measurement set-up dominate (Fig. 4). The design indicates a sidelobe level lower than -13 dB and a -27 dB cross-polarization component in the 45°-plane. The sidelobe level could not be confirmed due to the measurement set-up, but a cross-polarization component less than -22 dB was measured at  $30 - 35^{\circ}$ . Patterns measurements at  $0.95 f_0$  (234 GHz) and  $1.05 f_0$  (258 GHz) agree well with theory and result in symmetric patterns (Fig. 5). The slight dip of 1 dB at normal incidence at 254 GHz is not predicted by theory and could not be explained. The double-dipole antenna results in a theoretical coupling efficiency to a gaussian beam with  $\theta_0 = 30^\circ$  of 77%, 83%, and 84% at  $0.95f_0$ ,  $f_0$  and  $1.05f_0$ , respectively (Fig. 6). The measured electromagnetic coupling between two double- dipole antennas in the H-plane was lower than -20 dB (or -30 dB) for a center-to-center spacing of  $1\lambda$  (or  $1.5\lambda$ ). The coupling in the E-plane was negligible for center-to-center spacing greater than  $1.25\lambda$ . It is therefore possible to array the antennas for diffraction-limited imaging. We are now investigating the possible use of these antennas to high-gain submillimeter-wave reflector systems.

## ACKNOWLEDGEMENTS

This work was supported by the NASA/Center for Space Terahertz Technology at the Univ. of Michigan.

#### REFERENCES

[1] G.M. Rebeiz, D P. Kasilingam, P.A. Stimson, Y. Guo and D.B. Rutledge, "Monolithic millimeter-wave two-dimensional horn imaging arrays," *IEEE Trans. Antennas Propag.*, vol. AP-28, pp. 1473-1482, Sept 1990.

[2] S.S. Gearhart, C.C. Ling and G.M. Rebeiz, "Integrated millimeter-wave corner-re-flector antennas," To appear in the July Issue of the *IEEE Trans. Antennas Propag.*, 1991.

[3] P.T. Parrish, T. Sollner, R.H. Mathews, H.R. Fetterman, C.D. Parker, P.E. Tannenwald and A.G. Cardiasmenos, "Printed dipole-Schottky diode millimeter-wave antenna array," *SPIE Millimeter-Wave Technology*, vol. 337, pp. 49-52, 1982.

[4] A. Skalare, "A dipole antenna feed for a dielectric lens surface," Internal report of the national Inst. for Space Research, P.O. Box 800, 9700 AV Groningen, The Netherlands, Jan. 1990.

[5] R.S. Elliott, Antenna Theory and Design, Prentice Hall, New York, Chapter 2 for patterns and Chapter 7 for impedances, 1981.

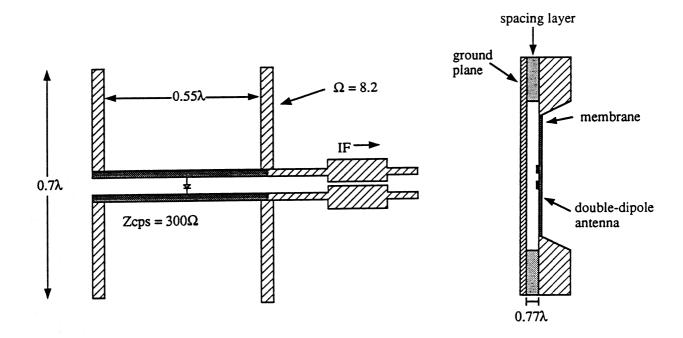



Figure 1: The double-dipole antenna on a thin-dielectric membrane and baked by a ground plane.

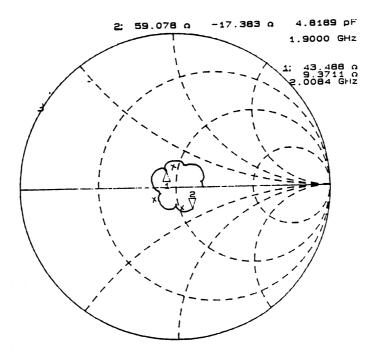



Figure 2: Measured input impedance of the double-dipole antenna at 2 GHz.

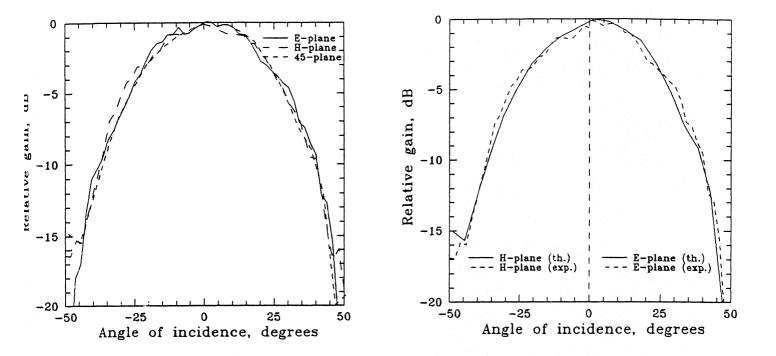



Figure 3: The measured E, H and 45° patterns at 246 GHz (left), and the comparison with theory for the E and H-plane patterns (right).

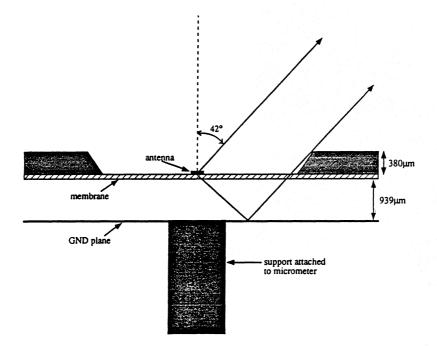



figure 4: The measurement set-up at 246 GHz. The finite size of the membrane introduces blockage and limits the measurement angle to  $\pm 40^{\circ}$ .



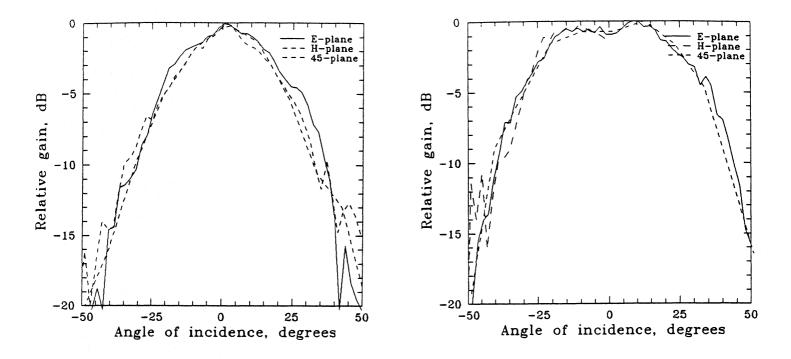



figure 5: The measured E, H and 45° patterns at  $0.95f_0$  (234 GHz-left) and  $1.05f_0$  (258 GHz-right).

| Freq                | Z <sub>ANT</sub> | Gain   | X-pol | ε <sub>mb</sub> (-20dB) | $\epsilon_{Gaus}(\theta_0=30^\circ)$ | $\epsilon_{Gaus}(\theta_0=27^\circ)$ |
|---------------------|------------------|--------|-------|-------------------------|--------------------------------------|--------------------------------------|
| 0.90 f <sub>o</sub> | ~ <b>5</b> 0Ω    | -      | -     | -                       | 64.7%                                | 66.5%                                |
| 0.95 f <sub>o</sub> | <b>~</b> 50Ω     | 11.8dB | -27dB | 82%                     | 77.4%                                | 77.1%                                |
| fo                  | ~ 50Ω            | 11.7dB | -26dB | 88%                     | 83.4%                                | 81.1%                                |
| 1.05 f <sub>o</sub> | ~ 50Ω            | 11.2dB | -25dB | 91%                     | 84.8%                                | 80.9%                                |
| 1.10 f <sub>o</sub> | ~ 50Ω            | -      | -     | -                       | 82.7%                                | 77.3%                                |

figure 6: Calculated antenna parameters vs. frequency.  $\epsilon_{mb}$  is defined as the main-beam efficiency till the -20 dB points and  $\epsilon_{Gauss}$  is defined as the coupling efficiency to gaussian-beams of parameter  $\theta_0$ .