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The material presented below is intended as a review only. A full length paper has been
submitted for publication in IEEE/MTT (May 1992).
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ABSTRACT

An investigation of the coupling efficiencies to a gaussian-beam of a double-slot antenna on

a hyperhemispherical lens is presented. It is shown that both lenses couple equally well to

an appropriate gaussian beam (about 80%). The radiation patterns of both lenses with a

double-slot antenna are computed using the ray-tracing method. The experimental radiation

patterns are presented and show close agreement to the theoretically computed patterns.
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I. INTRODUCTION

The use of a hemispherical lens with an attached extension length can greatly improve

coupling to a gaussian-beam system. In optical theory, an extension length of rin is used,

and this extended lens is termed a hyperhemispherical lens. This extension length was chosen

since it satisfies the sine condition, which is where first-order aberrations are removed [1].

The hyperhemispherical lens was borrowed into the millimeter-wave field {2,3,4}, but it was

found that radiation patterns from these lenses were very broad and even multi-lobed in

some cases. The hyperhemispherical lens is capable of coupling well to a gaussian-beam

system. However, it couples most efficiently to a converging beam and not to a plane

wave. Recently, several researchers showed that a narrow, diffraction-limited beam could

be achieved by putting the antennas on an elliptical lens [5,6}. The same effect was also

found by taking a hyperhemispherical lens and adding a planar extension to it [7]. Figure 1

shows that the focus of this longer extension length lens superimposes exactly on the second

focus of an elliptical lens. It is known from optical theory that a plane wave converges to

the second focus of an ellipse, and therefore a lens with this extension length is simply a

close geometrical approximation to an elliptical lens. The validity of this approximation

depends on the maximum allowed phase tolerance. For high dielectric constants (see Fig.

1) and relatively low frequencies, the phase difference becomes small and the approximation

is valid. Generally, for lens diameter of 12.5mm, e larger than 4, and frequencies less than

300GHz, the approximation is very good.
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II. THEORETICAL AND EXPERIMENTAL PATTERNS

The theoretical radiation patterns are computed using a ray-tracing technique [9]. First,

the feed antenna pattern into the dielectric is calculated using standard far-field methods.

Figure 2 shows the calculated radiation patterns for a double-slot antenna with L =

and d 0.16Aair . These parameters were chosen to result in a symmetric pattern inside the

dielectric and a low cross-polarization in the 45°-plane. Ray-tracing is then used to calcu,

late the electric field distribution across the aperture plane (Fig. 3). In this method, the

fields are decomposed into TE/TM components at the lens/air interface, and the appropri-

ate transmission formulas are used for each mode. The power reflected into the substrate

is neglected in this analysis. A diffraction integral over the aperture then yields the far-

field pattern from the lens. Experimental measurements were performed at 246GHz on a

13.7 mm diameter silicon lens (6=11.7) with the double-slot antenna as a feed. Different

values of extension length were achieved by adding high-resistivity silicon wafers, resulting

in 3 extension lengths: hyperhemispherical, intermediate, and elliptical (Fig. 3). Measured

patterns at the elliptical focus (Fig. 4) demonstrate a gain of 28.6dB±0.3dB with relatively

low sidelobes (-16dB). From the measured patterns, the resulting aperture efficiency (cou-

pling to a plane wave) is 73%. The theoretical patterns calculated for this position are a bit

wider than the measured patterns (Fig. 5). This discrepancy arises from the fact that rays

at a certain angle end up hitting the critical angle at the lens/ air interface, resulting in no

transmission of rays after this point. This limits the aperture size and results in a wider theo-

retical pattern. Note that this discrepancy is only significant at the elliptical focus for lenses

with high dielectric constants. Measured patterns at the elliptical focus for ±10% of the
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246GHz design frequency (Fig. 6) result in nearly the same gain, and therefore the double-

slot antenna has good pattern bandwidth. The measured power at broadside is nearly the

same from 222GHz-270GHz, also indicating good impedance bandwidth for the double-slot

design. The measured patterns at the intermediate focus (Fig. 7) are similar to the elliptical

focus, but with a gain of 24dB±0.3dB. In this case, the critical angle is not a problem and

there is close agreement between theory and experiment (Fig. 8). At the hyperhemispherical

focus (Fig. 9), the pattern becomes very wide with a gain of 18.1dB±0.3dB and shows a

multi-peak behaviour, as indicated by theory (Fig. 10). As will be seen later, this has no

detrimental effect on the coupling efficiency to a converging beam. The ratio of the 246GHz

measured received power at broadside for an elliptical lens and a hyperhemispherical lens

was 10dB which is the same as the difference in the measured directivities. This indicates

that no power is coupled to substrate modes that may arise in the flat wafers.

III. GAUSSIAN-BEAM COUPLING

In order to match the double-slot/extended hemisphere system to a gaussian beam, one

could compute the electric field across the aperture and match this to a gaussian beam.

Since we had already predicted the far-field amplitude and phase distributions, we chose to

compute the coupling efficiency to a gaussian beam in the far-field (see Appendix). In this

calculation, the power radiated by the slot antennas to the air-side (which is 11.5% of the

total power) is taken into account, and no lens-air inferface loss is considered. The power

loss radiated to the air side could be reflected using an appropriately designed cavity at

the expense of impedance bandwidth. Figure 11 gives the gaussian-beam parameters which
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yield the highest coupling efficiency, and shows that all three focus positions are capable

of coupling equally well to a gaussian beam. However, the non-elliptical foci require a

converging wavefront, whereas the elliptical focus couples directly to a Gaussian beam with

an equal phase wavefront. Note that equivalent gaussian-beam parameters in the near field

may be found through a simple inverse Fourier transform. A gaussian beam experiment was

performed at 246Gliz, in which it was attempted to couple all the power coming out of a lens

into the double-slot antenna. For the elliptical focus, the lens was placed at the minimum

waist position, where the radius of curvature is infinite, indicating an equal phase wavefront.

For the hyperhemispherical position, the lens was placed closer to the lens, at a position

where there is a negative radius of curvature. The proper negative radius of curvature

and position were computed knowing the gaussian-beam parameters from Figure 11. It was

found that the ratio of powers with either focus is the same within experimental error (±4%),

indicating that both the hyperhemispherical focus and the elliptical focus will match equally

well to an appropriately designed gaussian-beam system. Similar measurements were done

on a log-periodic antenna from 90-250GHz. The results are similar to those presented in this

paper and have been submitted for publication in IRMMW (May 92).
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APPENDIX

The field representation of a Gaussian beam is of the form: Ecauss(0) exp-19/8°12 expi7[9/9112
The coupling efficiency between an antenna pattern and a gaussian beam is calculated using
the formula [12,14

r
1Gauss 71=

I ff F(0, 0)9 exp- (9002 expi7(0/91)2 sin OclOd012 

ff IF(0, 0)1 2 sin OclOcifk ff exp- 2 (0/00 )2 sin OclOcIO

where F(0, 0) is the far-field pattern of the antenna, and'e,„ is the co-pol unit vector. The
value 00 controls the amplitude term and e l controls the phasing term. These values are
varied to optimize the coupling efficiency.
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Figure 1: The synthesis of an elliptical lens from a hyperhemispherical lens and planar
wafers. The extended hemisphere is a very good approximation to an elliptical lens at high
dielectric constants.

Figure 2: The double-slot antenna (left) and its radiation patterns into a silicon (€.11.7)
dielectric (right).
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Figure 3: The ray-tracing method. Note the three focus positions that are achieved by
adding high-resistivity silicon wafers.
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Figure 4: Measured patterns at the elliptical focus at 246GHz. The patterns are diffraction-
limited by the size of the aperture
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Figure 5: Comparison of theory vs. experiment for the elliptical focus. The critical angle
limits the size of the aperture, resulting in wider theoretical patterns.
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Figure 6: Measured patterns at the elliptical focus at 222GHz (left) and 270GElz (right).
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Figure 7: Measured patterns at the intermediate focus position at 246Gliz.
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Figure 8: Comparison of theory vs. experiment for the intermediate focus.
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Figure 9: Measured patterns at the hyperhemispherical focus position at 246GHz.

Figure 10: Comparison of theory vs. experiment for the hyperhemispherical focus. Notice
the predicted multi-peak behaviour.
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Coupling to Gaussian Beams

Focus Position
(extension)

Gain
Gaussian Beam Parameters

Matching
Efficiency00(amplitude) e

1 (phase)

Elliptical
(.39 radius)

28.6dB 5.00 - 79%

Intermediate
(.32 radius)

25.7dB 8.2° 11.3° — 83%

Hyper-
hemispherical
(.25 radius)

18.1dB 13.3° 13.5° — 81%

Gaussian Beam Electric Field: exp[-(0/0 0)2] exp[j*Vr ( 0/01)2]

Max. Power Elliptical 
Max. Power Hyperhemispherical

Figure 11: Table of Gaussian beam parameters.


