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Abstract

We present a technique for determining the power loss and diffraction effects that
occur when the field in a beam waveguide is truncated by an axially symmetric stop.
The technique is based on the principles of multimode Gaussian optics. Although the
underlying theory is applicable to any long-focal-length optical system, we concentrate
on beam waveguides that are fed by diagonal horns, corrugated horns, smooth-walled
conical horns, and uniformly illuminated apertures. We demonstrate the technique by
calculating the total loss and beam profiles in a system comprising a diagonal horn, a
lens, a window, and two off-axis mirrors, with the finite size of each component taken
into account.

1. INTRODUCTION

When designing the quasi-optical systems of millimetre and submillimetre-wave receivers,
it is necessary to know at what radius the propagating beam can be truncated at a stop
or aperture without incurring a significant loss. If the beam has been refocussed a number
of times, perhaps by a series of lenses or mirrors, the loss cannot be calculated by simply
integrating the far-field pattern of the feed antenna over the region defined by the stop.
Also, if the beam is significantly truncated diffraction effects will occur, which will affect the
subsequent behaviour of the beam.

To first order, a known field can be traced through a long-focal-length optical system by
extracting the lowest-order Gaussian mode [1]. In the case of a corrugated horn, this approach
is particularly attractive, since the field at the mouth of the horn is linearly polarized and
can be described as a simple Gaussian to high accuracy [2]. However, for a diagonal or
smooth-walled conical horn, or indeed any antenna that does not have a Gaussian aperture
distribution, the situation is more complicated, because, although the simple Gaussian gives
an indication of how the scale size of the beam changes as one moves through the optical
system, it does not give any indication of how the sidelobe structure of the beam evolves
[3] [4], [5]. This limitation is particularly troublesome when the illuminating antenna has a
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highly-truncated aperture field, because then the beam changes from being spatially confined
to being spatially diffuse as one moves in and out of foci. In the single mode approximation
one is therefore left with the problem of surmising how the 1/e Gaussian radius is related to
the poorly defined radial edge of the actual beam.

To solve this problem higher-order modes can be introduced into the theoretical description
of the propagating field. (e.g. [6], [2], [7], [3]). We have devised a straightfoward technique
for determining the power loss, which is based on the idea that for a multirnode Gaussian
beam the scale size of the beam at a plane is characterised by the Gaussian radius and the
sidelobe structure of the beam is characterised by the phase slippage; hence the truncation
loss is completely determined by these two quantities. It is therefore possible, for axially
symmetric truncation of the beam, to summarise the results for a particular feed antenna
in a single contour plot, which shows truncation loss as a function of normalised aperture
size and phase slippage. We discuss how such a plot can be used together with single-
mode design techniques to minimise the size of millimetre and subrnillimetre-wave optical
systems. If diffraction effects do occur due to significant beam truncation, then these can
be conveniently analysed using scattering matrix theory applied to Gaussian beam modes
[8], [9]. We illustrate the approach by calculating the beam profiles in a system comprising
a diagonal horn, a lens, a window and two off-axis mirrors, where the finite size of each
component is taken into account.

2 APERTURE-FIELD EXPANSIONS

2.1 Associated Laguerre modes

For a circular stop that is coaxial with the direction of propagation and perfectly absorbing
outside the transmitting region, the propagating fields are most conveniently described as a
sum of Associated Laguerre-Gaussian modes defined by:

The associated Laguerre polynomials are defined as in [10]. a is an integer. W and R have
their usual significance and 00 (z) tan—l (rW2 / AR) is the phase slippage for the fundamen-
tal mode between the waist and the plane of interest [11]. Notice that the Associated Laguerre
polynomials are defined such that the generalised power in each mode f f 1/1(r, 0)1 2 rdrde is
unity.
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We can expand the co-polar and cross-polar components of a beam in the form

00 00

7P(r, 0, z) = E E 2(1,,„7/,,,7:c"(r, 0, z) 0, , (2)
n=0 cy=0

where it is understood that the A6, are all zero. In reality, we truncate the series once the
power in the sum is close to 100 % of that in the actual beam. To determine the mode
coefficients A cdas , we evaluate the overlap integrals at the aperture of the horn. If the length
of the horn is L, the field at the aperture can be written

On setting the common-mode radius of curvature equal to the length. we can determine Anc/2
through

eiOna I rdraik(r,0)
A
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where /3„, = kzh j(2n + c + 1)00 (zh ). In these equations Wh is the Gaussian radius at the
aperture, and zh is the position of the aperture with respect to the virtual waist [2]. It is
normal to include the phase factors exp(jO na ) in the mode coefficients, since they depend
only on z.

There is a complete set of orthonormal modes associated with every value of 14/5„ and so
we are free to choose Wh in whatever way we wish. It has become common practice to use
the value of 147

h that maximises the power in the lowest order mode; we will call this value
Wh , op t • It can be shown, however, that in general Wh,opt does not lead to a mode set that
is particularly good at sampling the aperture field. In this paper, where we are interested in
accurate loss calculations, we will use the value of Wh that maximises the power in a finite
number of modes [12]. Once the contour plot has been generated for this mode set. we can
then transform back to the more commonly-used mode set for design purposes.

Let us now consider how the mode coefficients can be calculated for each of the horns of
interest.

2.2 Corrugated conical horn

The field at the mouth of a moderately-flared corrugated horn operating under balanced-
hybrid conditions can be regarded as having an HEn amplitude distribution with a quadratic
phase error:

Eh(r,0) Jo(x„r/a)jexp [—jkr 2 /2L] (5)

where L is the length of the horn, a is the radius of the aperture. and A, 2.405. As
described, the field is polarised in the y-direction, and all of the power is contained in the
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symmetric (0-independent) co-polarised component. Thus, only ALG modes of order 0 are
required in order to describe the beam. Wylde [2] has shown that for a corrugated horn
Wh,opt -2-- 0.644a.

2.3 Smooth-walled conical horn

The modal expansion of the smooth-walled conical horn has been discussed by Murphy [4].
The field at the aperture can be regarded as having a TEn amplitude distribution with a
quadratic phase error:

Eh(r, 0 ) C-
X 
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where L is the length of the horn, a is the radius of the aperture, and X3c = 1.841. It can be
shown that 91.8% of the power lies in the 0-independent co-polar component, while 4.1% of the
power lies in each of the 0-dependent co polar and cross-polar components. Fortunately, we
only need modes of order a = 0 and 2 (4), since all of the field terms are either 0-independent,
or else depend on cos(20) or sin(20). Consequently,
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2 . For a conical horn, it can be shown that

147
h ,op t = 0.770a. When W h = Wh,opt, and the total number of modes is limited to 200

(nn, a,.r = 100), only 99.3% of the power in the actual beam is included in the expansion. By
choosing Wh = 0.140a, however, this fraction can be increased to 99.6%, and so we have used
this value in all of our calculations.

2.4 Diagonal horn

The field at the aperture of a moderately-flared diagonal horn supporting spherically-expanding
TEio and TEm square waveguide modes can be written in the form

Eh( r , Eh(x, cx [cos(iry/a)i cos(rxia)jj exp.( —jk 2 /2L) (8)

where L is the length of the horn and a is the sidelength of the aperture. The co-polar
direction of the hybrid field can be regarded as the v  i + j direction, and the cross-polar
direction can be regarded as the h = j direction. The field at the aperture can then be
written

Eh OcoV 11)csh
7
/)co {cos(ry/a) cos(rx/a)]

/Pc., [cos(ry/a) — cos(rxia)],

where co, es denote the co-polar and cross-polar components respectively. Withington [5] has
already considered the behaviour of diagonal horns in terms of Gaussian modes, but in this



Page 188 Fourth International Symposium on Space Tcrahcriz 7"cchnology

paper we wish to use Laguerre polynomials rather than Hermite polynomials. This slightly
more complicated expansion can be achieved by recognising that there is a 4-fold rotational
symmetry associated with both the co-polar and the cross-polar fields; therefore

00 00
, , z) = E E A z(40, ) #014a)x°8 ( r , 0 , z)]

n=0 a=0
oo oo

2Pc3(r, 0, z) = E E 4(4a+2) 0(14a+2),sinfr , 0 , z)

n=0 a=0

The mode coefficients A na., Bnce can be found by expressing r and 0, in 74(r, 0), in terms of
x and y, and integrating over the aperture. When this Cartesian integration is carried out,
it is found that Wh,opt = 0.430a. Furthermore, when W h = Wh,opt, and the total number of
modes is limited to 200 (nmas = 40, ',as = 10), only 98.5% of the power in the actual beam
is included in the expansion. By choosing W = 0.11a, however, this fraction can be increased
to 99.1%, and so we have used this value in all of our calculations.

2.5 Uniformly-illuminated aperture

The most difficult field to propagate through an optical system is that produced by a uni-
formly illuminated aperture. Although, of course, one cannot manufacture such a horn. it is
precisely this field that would have to pass unimpeded through an optical system if one were
trying to maximise the aperture efficiency of a reflecting antenna. It is interesting, therefore,
to consider this extreme case.

The beam produced by a uniformly illuminated circular aperture has axial symmetry, and
therefore the modal expansion simplifies to a sum of t/  modes. If we allow the fields
at the aperture, radius a, to have phase curvature, Rh, we can write

= exp [—jkr2 /2Rd for r < a (14)
0 otherwise

and the mode coefficients become

Ao(a/Wh) = Ln(2(r
2V2- fa 0

/W0 2 ) exp [—(r/Wh ) 2 ] rdr . (15)
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The mode coefficients can be calculated numerically [3], but it is more efficient to use the
recursion relationship

Wh)2)— Ln4-1.( 2( a /W102 )) exP {—( /Wh) 2 ]n
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n+1,0 = 2 AC 	(16)

'4;0 = 1 — 2 exp {—(a/Wh )2 1 . (17)

In the case of a uniformly illuminated aperture, it can be shown that Wh , op t = 0.892a. When
Wh = Wh,opt, and the total number of modes is limited to 500, only 98.0% of the power in the
actual beam is included in the expansion. If we choose Wh = 0.107a, however, this fraction
can be increased to 99.9%, and so we have used this value in all of our calculations.
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3 ANALYSIS OF TRUNCATION USING ALG MODES

If a beam is truncated at the plane z = zo , by a coaxial circular aperture of radius r t then
the field at the aperture has the form E ap(r, 9, z0 ) = 0 for r > r t , and we can write for each
component of the beam (cross-polar and co-polar):

Eap(r, 0, zo ) E AcTic, 0:,cos , , zo)

n,cx

where T denotes a truncated mode. The A ci,,,3 are the mode coefficients for the incident
beam. Since a truncated mode is not a true mode of propagation, some of the power in a
given incident mode will be redistributed between the other modes. Mathematically, we can
write each truncated mode as a sum of true propagating modes:

Ipna,cos(r, zo )
T = E smc ,ncy oma

l
 ,cos (r,
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where Bm
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3 , ,na Xi:. We can regard Sm

c/
c:, as a scattering matrix, which oper-,na

ates on the vector Ac of incident mode coefficients to yield the vector B m
c/s , of transmitted

mode coefficients. Thereafter, the beam propagates with the new set of mode coefficients
until the next truncating aperture is encountered. Thus, the beam can be reconstructed
anywhere along the optical path.

If we are interested in the power that is transmitted through the aperture then this is given
by:

Pt = E.Eitrdrde 1
0 9

7pc0 ( ) + ocs (z) 1 2 rdrd9
frt 0

(23)
r= ,9=0 r= =0

where co and cs denote the co polar and cross polar fields respectively. In the following
discussion, the co polar and cross polar fields O c,,,11), have been normalised to make the
total generalised power f0 ./0210 E.E*rdrde unity. The above equation can be expressed in
terms of the phase slippage A00 between the aperture of the horn (where the mode coefficients
A na , By evaluated) and the plane of interest:

( Pt)co,cs --= exp[2(n m).i.A0o]• (24)
m,m,a
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The subscripts co and cs denote the co-polar and cross-polar fields respectively, and the total
power transmitted Pt is the sum of the two components.

It is clear that Pt depends not only on the ratio of the truncation radius r t to the Gaussian
beam width W (z), but also on the phase slippage 00 (z). As stated earlier, the Gaussian
radius characterises the scale size of the beam at a plane, and the phase slippage characterises
the form (sidelobe structure) of the beam; hence one would expect the fraction of power
transmitted to depend on these two quantities.

A key feature of the proposed technique for determining the truncation scattering matrix
coefficients and for the truncation power loss calculations is that it is possible to derive
recursion relationships for the integrals Im

e (x t ), which enable the calculations to be evaluated
easily. The relationships are:

+1,n+1 (Lm(xt) L„,+i(xt))(Ln+i(xt) 1,n (x t ))e —xt (25)

14+
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1 	vim + a + 1I 4- 14+1,0 for m > 0 (26)

'‘,/n + a + 11r 1 	+ Nim + a + — \/m 1.44 1, ,,, for in, n > 0 . (27),n

For a given plane, the Gaussian radius and the differential phase slippage are functions of
the mode set chosen, and so to be precise we should write W(z,Wh ) and 00 (z, Wh ). For
computational reasons, we have used the value of Wh that maximises the power in a finite
number of modes, but from a design point of view, we would like to use the value of Wh that
maximises the power in the lowest-order mode Wkopt . For every point on the optical path,
we therefore need to transform between the computationally convenient W W (z Wh ) and

0 =00 = 00( Z 
I
WO, and the more commonly used Wopt W ( Z , Wh,opt) and o,opt Oa . 7 1 W h,opt)•

After some algebra, it can be shown that

00,opt arctan((Wh/Wh,0pt)2 tan(00)) (28)

rtlWopt = (rt/W)(Wh,opt 
sin (Oo,opt))/( Wh sin(0o)) (29)

Hence, once the contours of constant loss have been calculated, they can be presented in
terms of the more commonly used single-mode parameters.

In Figs. 1 - 4 we show, for the diagonal horn, smooth-walled conical horn, corrugated con-
ical horn, and uniformly illuminated aperture, contours of constant loss, as a function of
normalised truncation radius r t iWopt and differential phase slippage o,opt.

It can be seen that for A00,0pt close to zero, the fields are spatially confined, whereas for
A0o,opt close to 712, the fields are diffuse. For a diffraction limited horn, these values corre-
spond to positions in the optical system where there are images of the aperture and Fourier
transform of the aperture, respectively. It is important to realise that the central portion of
this plot does not necessarily correspond to the beam waist. In fact, in the case of a physically
realisable horn, the waist occurs at some negative phase slippage, and the phase slippage only
becomes zero once the diverging beam has reached the aperture. As the beam propagates
away from the aperture, sidelobe structure develops, and a spatial redistribution of power
occurs as the image of the horn undergoes diffraction. This phenomenon shows up as Pt,
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developing off-axis wings with increasing values of 110 0 ,opi . The majority of the the power
still remains within r = Wh , opt , emphasising that the simple Gaussian gives a reasonable
first order description of the diffraction process.

If one is interested in the extent of the far-field beam, then the corresponding A0 0,opt depends
on the phase error (s = a2 / 2AL) across the mouth of the horn. If the phase error is zero then
the waist occurs at the aperture, and the far-field beam pattern corresponds to 0 ,op t = 712.
If there is a finite phase error, the waist is not at the aperture, and the far-field power pattern
corresponds to a Z100,0pt of less than r/2 [13]. In general, if the beam propagates some distance
through a waveguide before reaching the point at which it is truncated, the phase slippage
corresponds to the total phase slippage accumulated since leaving the aperture. Notice that
because A00,„pt is multiplied by an even number when calculating power loss, P will be the
same for A(ko,opt and Acko,op t nr, where n is an integer. P is therefore only plotted for
values of 6000,opt lying between —71-/2 and 7r/2. Strictly speaking only half of the plot is
required because the truncation loss is symmetric; conceptually, however, it is easier, when
doing calculations, if both halves are visible.

In the case of the uniformly illuminated aperture, it can be seen that there are poorly-defined
sidelobes that propagate to high values of r/W as A00,opt increases. This structure is real
and can be related to the number of Fresnel zones that fill the aperture. A similar structure
appears in some of the other plots. It is clear from Fig. 2, that it is almost impossible to
transmit the beam from a uniformly illuminated aperture through an optical system: beam
spreading occurs even for small values of phase slippage, and away from the near-field region,
a significant fraction of the power is diffracted to large values of (r/W).

At the other extreme, a corrugated horn only requires r t > 2.0W for the losses to be less than
0.035dB, or equivalently 0.8%. Fig. 1 confirms the "rule of thumb" that, for a corrugated
horn, one has to use optical components that are larger than 3 beam radii. In certain regions
of the system, the components can be very much smaller, and our graph quantifies this
statement.

4 USE OF CONTOUR PLOTS TO DETERMINE POWER
LOSS

In the previous section, we described how to plot contours of constant loss as a function of
normalized truncation and phase slippage. In this section, we explain how to use these plots
to calculate the loss at any plane in a complicated optical system. We suggest the following
procedure:

1. Determine the size of the beam at the aperture of the horn that maximises the power
in the fundamental mode W, opt  For the horns considered in this paper, the options are
summarised in Table 1.
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Horn type
_

Wh,opt

top-hat 0.892a
corrugated conical 0.644a
smooth-wall conical 0.770a
diagonal pyramidal 0.430a

Table 1: The size of the beam at the mouth of the horn that maximises the power in the
fundamental mode. For feeds having a circular aperture, a is the radius of the aperture,
whereas for feeds having a square aperture, a is the sidelength of the aperture.

2. Once Wh,opt is known, the mode set is completely defined, and the position and size of the
waist can be calculated from:

Zh =  and W(0, Wh,opt)
147h,opt (30)

1 (+ 77,14—)
h,opt

1 4. 'n/4qt,opt 

AL

We also need the phase slippage between the waist and the aperture:

3. Having calculated the position and size of the waist, propagate the beam through the
optical system and calculate the size of the beam at the plane of interest, Wopt [1]. Clearly,
one can then calculate the normalised radius of the truncating stop r t /Wopt . To complete
the analysis, we also need the phase slippage between the aperture of the horn and the stop
A00,0pt(

Z ) 00,opt(Z)-00,opt(Zh), where 00,opt is the phase slippage between the waist and the
stop. If there are intervening optical components, one can calculate the total phase slippage
by summing the phase slippages accumulated between each of the focussing elements.

4. Once the normalised radius r t /Wopt and the phase slippage A00,0pt have been calculated,
the appropriate contour plot can be used to determine the truncation loss. Note that if
A ( 00,0pt) > 712, then it should be rescaled by subtracting off an integer times 7 so that
.A(00 ,opt) nr lies between —r/2 and 712.

5 EXAMPLE

As an example, consider the 200 Gliz to 900 GHz optical system listed in Table 2 [14]. where
a diagonal horn is coupled to a reflecting antenna through a lens and two off-axis mirrors.
The horn is part of a superconducting mixer which is located in a cryostat, and therefore the
beam has to pass through a window which must be made as small as possible. In Table 2, we
list the phase slippage, normalised truncation radius, co-polar percentage power transmittion
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component separation(mm) W(mm) a/W 00,0p deg. Pco %) Loss (%)
virtual waist IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

1■11111111111111E1111111111111111111111111111111111111111111111111111113.8
horn aperture 0MIEIII 100.0 imim

11•1111111111111111111111111111111111111111111111111111=32
lens (f=32) 6.5 3.8 IIIMENII 98.3 1. 8

111.111111111111111 111111

86
window (50mm)

280
mirror (1=280)

280
image

350

1111111111111111111111

mirror (f=350)
350

cass focus

Table 2: Beam parameters of an optical system comprising a diagonal horn, a lens and two
off axis mirrors. The beam parameters are calculated at 400 GHz. The horn is 19.0mm long
and has a 3.5mm square aperture.
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from horn through relevant component and the co-polar truncation loss for each of the main
optical components.

It is clear from Fig. 2 that, for diagonal horns, it is difficult to clear the beam out to a loss
better than 1.5%. If we use the technique described above to calculate the amount of power
lost at an individual aperture (and assuming no other truncation loss in the optical system)
we arrive at the figures given in the last column. As is clear from penultimate column, it is a
mistake, however, to think that if one has a cascade of truncating components, the total loss
is simply given by the sum of losses associated with the individual components. Obviously,
if the beam does not diffract at any of the apertures, the total loss is determined by the
aperture with the greatest loss, since it is not possible to lose power twice by truncating a
beam at the same normalised radius twice. If the beam does diffract then power can be lost
twice. We can use the truncation contour plots using the above procedure, therefore, as a
way of establishing how big an aperture should be in order to avoid truncation.

If one wants to calculate the total loss incurred in a system for which the diffraction at each
component is significant, one must calculate how the beam spreads at each of the apertures.
This calculation can be done by using the truncation scattering matrix technique described
in section 3 to charaterise the way in which power is redistributed between modes as the
beam passes through each stop [15, 8]. We have used such a scattering-parameter technique
to analyse the example optical system. It turns out that the total loss (penultimate column)
is, as expected, much less than the sum of the individual losses [9].

In Fig. 5, we use the mode coefficients, phase slippages, and Gaussian radii to reconstruct the
beam profiles at a number of different planes. Clearly, in this particular case, the apertures
are many wavelengths in diameter, and the beam diffracts only slightly after passing through
each stop. Consequently, the first lens after the mixer truncates the beam, and this truncated
beam passes all of the way through the optical system without much further interference.
From a modal point of view, the first lens is acting as a mode filter which rejects some of the
higher order modes. In low noise receivers it is, of course, desirable to reject the high-order
modes at low temperatures because then less noise is coupled into the system.

6 CONCLUSIONS

We have presented a technique for determining the power loss and diffraction effects that
occur when the beam in a beam waveguide is truncated by an axially-symmetric stop. The
technique is based on the notion that for a multimode Gaussian beam the scale size of the
beam at a plane is characterised by the Gaussian radius, and the intensity distribution of
the beam is characterised by the phase slippage. Hence, the loss at a truncating aperture is
completely determined by these two quantities also.

The most difficult part of an analysis lies in calculating contours of constant loss as a function
of normalised truncation and phase slippage. If, however, the truncating aperture is circular,
and the beam is expanded in terms of Associated Laguerre modes, the necessary integration
can be reduced to evaluating a recursion relationship. The appropriate scattering matrix for
an aperture can also be efficiently calculated using the same approach.
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Power Loss (dB)
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Fig. 1 Contours of constant power loss (dB) as a function of phase slippage and
normalised truncation for the beam of a corrugated horn.

Power Loss (dB)

Fig. 2 Contours of constant power loss (dB) as a function of phase slippage and
normalised truncation for the co-polar beam of a diagonal horn.
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Power Loss (d13)
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Fig. 3 Contours of constant power loss (dB) ns n function of plinse slippnge nnd
nortnnlised truncation for the ro-pobtr bennt of n smooth-vvniled conicni horn.

Power Loss (dB)

Fig. 4 Contours; of constnnt power loss (dB) ns n function of phnse slippnge mid
nortnnlised trtmcntion for the benm of n uniformly illuminnted nperture.
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x---Y Plane Power Patterns

v—II Plane Power Patterns

Fig. 5 Reconstructed beam profiles at various planes in the example opi icrl system . The
two curves correspond to the copolar power (solid line) and total power ((lashed line). Also


