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Abstract

Possibilities of applying far-field, near-field, and compact range techniques on re-
flector antennas in the THz frequency range are critically discussed. In addition, other
methods such as defocusing, and combining of the mechanical reflector surface mea-
surements and the feed horn radiation patterns are discussed. The discussion of the
compact range measurement method includes a description of a recently introduced
hologram type of compact range. Antenna test methods in the THz range, are needed
for several future scientific satellites. None of the current methods have, so far been
validated for use in the THz range. One may conclude from the analysis of the dif-
ferent methods in this work, that the far-field method can be discarded for certain,
due to the atmospheric effects. The near-field method remains a possibility, however,
an expensive, high quality moving stage is needed, and phase errors caused by flexible
cables have to be dealt with In some cases, a defocusing method to bring the far field
closer may prove to be practical. Technically, the most feasible and least expensive
method appears to be the hologram type of compact range. In this method, a planar
amplitude hologram is used to form the required plane wave. The hologram is inex-
pensive to manufacture, and it is also less sensitive to surface accuracy errors than a
reflector.

1 Introduction
Several scientific satellite missions with submillirneter wave radiometers operating at THz
frequencies have been planned for the future. FIRST (Far Infrared and Submillimeter Space
Telescope) of ESA for 500-2000 Gliz and SMIM (Submillimeter Intermediate Mission) of
NASA for 400-1200 Gliz are two examples of this kind of mission. In both projects, the most
important active elements of a radiometer, i.e., the mixers and local oscillator sources, have
been selected as areas requiring significant development. Also required for a high performance
radiometer, is some kind of a reflector antenna. Manufacturing a reflector antenna for space
application at 1 THz is a challenging task. An additional challenging task is accurate testing
of this antenna prior to launch. Presently, a convenient method for this kind of test is not
readily available. In NASA's SWAS (Submillimeter Wave Astronomy Satellite) for 490-550
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Gliz, the antenna with an aperture size of 0.55 x0.71 m, will be tested using a conventional
near-field method utilizing a granite reference plate. Extending this approach for 1-2 THz
testing of large antennas is difficult and promises to be extremely expensive.

One objective of this paper is to critically discuss the possibilities of applying far-field,
near-field, and compact range techniques on THz antennas. In addition, other methods such
as defocusing, and combining of the mechanical reflector surface measurements and the feed
horn radiation patterns are discussed. The discussion of the compact range measurement
method includes a description of a recently introduced hologram type of compact range.
This method is considered a strong candidate for 1 THz antenna testing.

The other objective of this paper, is to stimulate discussion and raise awareness of the
importance of THz antenna testing, which has often been disregarded and its difficulty un-
derestimated in satellite technological development programs. This may lead to the situation
where the mixers and solid-state sources will be ready for the satellite, but the mission will
be delayed because there is not any way of adequately testing the antenna.

2 Far-field method

A natural starting point when considering an appropriate antenna test method for a partic-
ular case, is the far-field method. This method is the most direct and also, if applicable, the
simplest. In the far-field method, the probe antenna is moved a distance d away from the
antenna under test (AUT) so that the spherical wave from the probe antenna is virtually a
plane wave in front of the AUT. The distance is usually required to be at least d 2D2/A,
where D is the diameter of the AUT and A is the wavelength. This requirement for the
minimum value of d, implies that a 22.5° phase change of the virtual plane wave is accepted
over the aperture of the AUT. For example, for an antenna with D 1 m, distance d = 6.7
km at 1 THz.

At microwave and low millimeter wave frequencies the large distance d is the main com-
plication for an electrically large antenna. At higher frequencies, even though the large value
of d remains a great problem, the atmospheric effects on the transmitted signal become the
most significant limitation. Firstly, around 1 THz the attenuation is many tens to hundreds
of d13/km [1]. Secondly, the temperature gradients and changes, and the humidity variations
cause short term fluctuations in the signal path attenuation. Due to the above reasons, far-
field measurements on a 1 THz reflector antenna with D > 0.2 m (d.270 m) are practically
impossible.

3 Near-field method

In the near-field method, the amplitude and phase of a field over the antenna aperture is
measured. The far-field is obtained then by taking a Fourier transform of the measured
field. The near-field data acquisition can be carried out over a plane, a sphere or a cylinder.
For a high gain antenna, like an electrically large reflector antenna, planar or cylindrical
scanning are obvious choices. In planar scanning, the AUT is kept fixed and the field probe
movement is realized with two linear stages. In the cylindrical case, usually the antenna
is rotated and the probe is moved on a linear stage. In satellite payload antenna testing,
rotating the antenna would obviously require the rotation of the whole satellite. Therefore,
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specific acceptable sampling point spacing and an estimate of the error due to aliasing can
be derived from a theoretical antenna pattern along with measurements of system noise and
error levels [6].

As an example, Figure 2 shows the effect of aliasing with different sample spacings. The
antenna that is used in the simulations is a 1 m Cassegrain antenna with a 12 dB taper in
the aperture amplitude distribution. Subreflector blockage of 70 mm in diameter is included
in the analysis. In this case, the main beam and first sidelobe can be determined if the
spacing of the sample points is not greater than about 100 A.

The main concern in near-field antenna measurements at 1 TIN, is the phase errors
caused by the flexible cables and probe positioning errors. The error analysis for planar
near-field measurements in [6], reveal that a one degree RMS phase error in the near-field
measurements causes less than a 0.12 and 1.2 dB inaccuracy at -10 and -30 dB far-field
amplitude pattern levels, respectively. In other words, as the pattern level decreases by 20
dB, the amplitude error caused by the near-field phase error increases by a factor of 10.

The phase errors caused by flexible cables are usually minimized by carefully selecting
the flexible cable and by properly designing its mechanical attachment to the moving probe.
One possible way to reduce bending of the cable, would be to use a cable with the form of
a helix. The disadvantage of this would be the additional length of the cable.

Since the possibilities for directly eliminating cable phase errors are limited, schemes to
first measure the phase error and then to remove the errors numerically have been developed.
The method described in [7] is a simple and easy method to realize. This method is based
on the measurement of the phase of the signal passing twice through the flexible cable.
Therefore, it works best for low loss cables. A more complicated three cable method is
described in [8]. This method enables one to measure phase errors on lossy and longer
cables.

There are two techniques that can be used to overcome the phase errors caused by
probe positioning inaccuracies, especially those perpendicular to the measurement plane: to
design and build a very high quality moving stage, or to supply a reference plane for the
measurements. The latter approach has been chosen for the tests of the 600 Gllz antenna
of NASA's SWAS satellite. The reference plate will be a highly flat granite plate, against
which the planarity of the probe scanning area will be calibrated.

A phase retrieval method may be also used to overcome the phase problems in the near-
field measurements. Much work has been done lately on this area [9]-[13}. In these methods,
only amplitude data in front of the antenna is measured. The phase value of the field is then
recovered from the amplitude data. The development efforts are pointed towards algorithms,
which can reliably recover phase information from a single amplitude scan. Presently, most
of the methods require amplitude scans over two planes, or over one plane with two focal
positions of the antenna feed horn.

Phase retrieval methods entirely overcome the problem of the flexible cables (assuming
obviously that the effect of the cable on the amplitude of the signal is constant) and require-
ments for the moving stage can be assumed to be eased somewhat. However, presently there
does not exist a thorough analysis of the errors caused by factors such as probe positioning
inaccuracies along the direction of the propagation and perpendicular to this direction.

Phase retrieval methods have been applied in holographic surface testing for the far-
field and Fresnel zone data of large telescopes up to about 100 Gllz (see, for example,
[14]). However, so far, for the near-field data the methods have been used only up to high
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Figure 1: Angular region of validity O by the scan length.

for satellite antenna testing, planar scanning is the most preferable method. In this method
only the probe antenna in front of the test antenna is moved. Comprehensive reviews and
analysis of the near-field measurements can be found, e.g., in [2,3].

Planar near-field measurements are most frequently realized with an x-y-stage in a rect-
angular coordinate system. However, plane polar scanning can sometimes lead to a simpler
mechanical moving stage [4,5].

Proper sampling of the near-field of an antenna requires first, to define the area required
to adequately cover the aperture field and second, to choose a dense enough sampling interval.
A too small sampling area and a too large sampling interval cause truncation and aliasing of
the data, respectively. For a high gain reflector antenna, which even a small reflector antenna
at the THz range is, truncation of the data due to a finite size scan area is not a problem.
A scan area that is slightly larger than the projected area of an antenna is sufficient. The
angular region for accurate far-field patterns is defined by the geometry of the antenna and
the scan area, as shown in Figure 1. Angle

tan ( Lscan D (1)
2z

is the maximum angle for accurate far-field [6]. This criterion can be used to determine the
minimum size of the scan plane for a given desired angular region and separation distance
z. Aliasing can be fully avoided only if the Fourier transform of the measured data is
band limited, and the sampling interval is A/2 or less [6]. For an aperture field, the band
limited requirement implies that the field should change smoothly and there should be no
discontinuities in the field.

If band limits do not exist or if the sampling criteria is violated by using too large a
data point spacing, aliasing errors occur in the use of the FFT to calculate the Fourier
transform. If an antenna with a diameter of 1 m at 1 THz is sampled with a )t/2 spacing in
a rectangular grid, about 11 million points are needed. Evidently, to carry out the near-field
measurements, a larger data point spacing is desired. As the spacing is increased, aliasing
first starts to have an effect on the far sidelobes. If only the main beam and possibly the
first sidelobes are of interest, the total number of points can be reduced significantly. The
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Figure 2: Simulated effect of aliasing on a far-field pattern of a 1 m Cassegrain antenna at 1
THz. Error free far-field Far-field pattern with different near-field sampling intervals
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Figure 3: A compact antenna test range (CATR) using a reflector.

microwave frequencies (< 30 Gllz) and usually for relatively small antennas. How easy it is
to extend these methods to the THz frequency range is not obvious. One of the concerns
is the sampling interval and whether it can be many wavelengths. A long sampling interval
is essential for testing submillimeter antennas. Another concern is the required amplitude
measurement accuracy. In spite of all the above unknowns, phase retrieval is an attractive
alternative for testing antennas at 1 Tliz, especially if a near-field testing method is desired.

4 Compact antenna test range method
In a compact antenna test range (CATR) an artificial far-field plane wave is formed in front
of the antenna under test (AUT). The main advantage of a CATR is that direct far-field
radiation patterns can be measured the same way as in the far-field mettiod under a controlled
environment and especially in a short range.

The required plane wave is formed from a feed horn spherical wave with a focusing
element, which is commonly realized with use of one or more reflectors. A typical CATR
arrangement is shown in Figure 3. All of the commercial CATRs use reflectors and they
are available up to about 200 Gliz. The quiet-zone size, i.e., the plane wave region, defines
the maximum diameter of the AUT. The diameter of the quiet-zone is usually 50-70 % of
the diameter of the main reflector of the CATR. The presence of diffraction from the edges
of the focusing reflector is the factor that primarily defines the useful quiet-zone area. The
diffraction is reduced with a special curved or serrated edge treatment of the reflector. Edge
diffraction is most pronounced at low microwave frequencies, and it gets less severe as the
frequency increases. Another way of looking at this, is that the effects of diffraction are
smaller, the larger the aperture (reflector) is in wavelengths.

While the diffraction effects become smaller, the high surface accuracy required for the
reflectors becomes a real problem as frequency increases. Usually, a surface accuracy of
A/100 is required. Therefore, for example, the surface error should be less than 3 pm RMS
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Figure 4: A hologram type of CATR.

at 1 THz. This implies that the cost of a reflector CATR will be very high at 1 THz.
The use of a lens instead of a reflector in a GATTI, has been considered as an option

to overcome the high surface accuracy tolerances [15,16]. For a lens with a low dielectric
constant er , the surface accuracy requirement is much less stringent.

For a lens, the surface accuracy is weighted by the factor of .,/,/(\fe—,. -- 1), as compared to
a reflector. For example, for a foam lens with €,.  1.1, the requirement for the lens surface
is 90 Am RMS at 1 THz. With er = 1.1, and a focal length to lens diameter ratio F I D = 3,
the thickness of the foam lens would be slightly less than the diameter of the lens Pl. The
thickness of the lens starts to increase rapidly as e r of the lens is decreased from the value
of 1.1. A lens could be a less expensive alternative than the use of a reflector. Primary
concerns about the use of a foam lens at 1 Trli, are the granulation of the foam and also
how easily and smoothly a foam surface can be shaped.

Perhaps, the most feasible way of realizing a compact range at THz frequencies is the
recently introduced hologram approach [18]. In this method, a planar, computer generated
hologram structure is used as a focusing element. Figure 4 shows an arrangement for a
hologram CATR. The hologram is placed at the opening in the wall, which divides the
anechoic chamber into two parts.

In general, a hologram structure changes both the amplitude and phase of the field
transmitted through or reflected from the structure. In practice, holograms are usually
realized so that they only change the amplitude or phase of the field. In this case, the
hologram is called correspondingly either an amplitude or a phase hologram. A transmitting
amplitude hologram, like the one used here for the compact range, can be approximated by
an appropriately shaped metallization pattern etched on a dielectric film with a thin copper
layer. Figure 5 shows an example of a binary amplitude hologram pattern used at 110 GHz
[18]. This pattern is generated based on a known incident field, i.e., feed horn spherical wave
and the desired output plane wave. To reduce edge diffractions, the hologram is designed
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Figure 5: An example of a binary amplitude hologram pattern. Non-transparent and trans-
parent parts are shown with black and white, respectively.

to give a cosine amplitude taper. Furthermore, the hologram is designed so that the plane
wave leaves the hologram at an angle of about 33°. This is important to separate the desired
plane wave and unwanted wavemodes, which are due to the binarization of the hologram
transmittance. Using this pattern, the operation of a hologram CATR has been successfully
demonstrated at 110 Gliz. The diameter of the hologram was 300 mm. Figure 6 shows the
measured and theoretical amplitude of the quiet-zone field. The measured ripple is about
±1 dB and the diameter of the quiet-zone is about 2/3 of the diameter of the hologram.

Manufacturing an amplitude hologram is very inexpensive, only a few percent of the cost
of a comparable curved reflector. The hologram can be manufactured with a similar etching
process to the one used for making printed circuits. Since only the amplitude of the incoming
spherical wave is changed, the surface accuracy requirement is much less stringent than for a
reflector. Furthermore, high flatness is easy to achieve, since the hologram is simply stretched
onto a frame. The only disadvantage of a hologram structure is the fairly strong frequency
dependence, due to the diffractive nature of the component. This is not, however, a problem
in testing antennas of scientific satellites, because they are usually designed to operate at a
few specific spectral line frequencies.

As important as building the compact range well, is verifying the quality of the quiet-zone.
At lower frequencies, the quiet-zone is tested by measuring amplitude and phase distribution
on several cuts across the quiet-zone. Measuring amplitude cuts should not be significantly
more difficult even at 1 THz. Measuring phase cuts faces basically the same problems as
measuring phase in the near-field method. However, the situation in a CATR is somewhat
easier, since phase is only needed on linear cuts and not on a whole plane. Making a very
high quality linear moving stage is obviously much easier than to make an x-y-stage. This is
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Figure 6: Theoretical (--) and measured (- amplitude of the quiet zone field at an angle
of 33.06° with respect to the normal of the hologram.

especially true, because the linear stage does not have to extend over the whole quiet-zone
at one time. Therefore, phase errors due to the scanning mechanism can be neglected or at
least they can be estimated quite accurately.

Phase errors caused by flexing of the cable can not be neglected. However, they are
easier to handle in the case of the quiet-zone than in the near-field testing, again because
of the more limited scanning requirements. Furthermore, it is possible to totally overcome
the phase errors caused by the cables with the use of the differential phase method [20]. In
this method, a two channel receiver is moved across the quiet-zone and the phase difference
between the two channels is recorded. Then from the differential phase pattern, the normal
phase information is calculated. Very short period ripple and phase front tilts are difficult
to measure with this method.

Another common test is to measure the radiation pattern of a smaller reflector antenna
in a CATR and then to compare it to the one measured in the far-field. This would be a
valuable test to carry out in addition to the above mentioned quiet-zone tests. The size of
the test reflector antenna has to be limited to about 50-100 mm in diameter. Otherwise, the
far-field distance becomes too large. A comparison of the patterns of a small test antenna
measured at different points of the quiet-zone indicate the uniformity of the plane wave
region.
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5 Other methods
In addition to the above described method, there exists some other methods, which can be
considered, in general, only as marginal alternatives. However, in some specific cases, they
can prove to be useful. Two such methods are described in the following section.

Defocusing

It is well known that an antenna far-field radiation pattern, which exists ideally an infinite
distance away from the antenna, can be brought closer by moving the feed horn further out
from the focal position [19]. This is shown in Figure 7. Interesting to note, is that for a fast
optical system (F/D is small) a relatively small defocusing brings the far-field conveniently
close. This can be calculated from the well known thin lens formula:

1 1 1
-d- — -F- 71;

For example, if F = 1 m and the defocusing distance is 20 mm (d1 = 1 m 20 mm), we find
that the far-field of the antenna has been brought to d 2 51 m from the antenna. Figure 8
shows theoretical far-field patterns at 2D 2 /A 6.7 km and 51 m distances in defocused
and in focused cases at 1 THz. The antenna is a 1 m diameter Cassegrain antenna with
F D 1. The aperture field has a 12 dB amplitude taper and a subreflector blockage 170
mm in diameter. Aperture phase distribution was calculated by ray tracing with an axial
defocusing distance of 21.5 mm. This value was chosen, because it gave the best fit to an
ideal spherical phase deformation, caused by a defocusing of 20 mm. The high sidelobe level
of the antenna pattern is due to the large diameter of the subreflector, which is required for
a F ID = 1 Cassegrain system. A real antenna would be rather an off-set antenna.

A drawback of the defocusing method is the need to move the feed, or alternatively, the
subreflector relative to the antenna. This can be a significant problem in satellite payload
antenna testing. Another disadvantage is that the accuracy of the far-field relies on the
validity of the assumption that the defocusing affects only the phase distribution of the
aperture field. An obvious advantage of the defocusing technique is that one may carry out
measurements with the same simplicity as in conventional far-field measurements, but use a
shorter range.

Combined electrical and mechanical measurements

The far-field radiation pattern of a reflector can be calculated if both the amplitude and
phase pattern of the feed horn or feed system, as well as the surface of the reflector are all
accurately known. Measurement of the amplitude pattern of the feed horn is fairly straight
forward and includes no major problems, since a dynamic range of 30 dB should be sufficient.
Measurement of the phase pattern with conventional measurement methods is difficult at 1
THz. The main problems are the complexity of the measurement set-up, and errors caused
by flexing of cables needed in the system. Using the differential phase measurement method
[20,21], phase pattern measurements should not be a major problem either, even at 1 THz.
Mechanical antenna surface measurements can become the real bottleneck of this approach.
If the antenna surface is measured with a mechanical probe, the number of surface grid

(2)
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Figure 7: Defocusing brings the far-field to a conveniently close distance.
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Figure 8: Far-field pattern calculated as the antenna is in focus (--) and defocused by 21.5
mm —). Calculations are based on an exact near-field integration of the aperture field of
a 1 m Cassegrain antenna at 1 THz. To enable the comparison, the distance from the axis
values are multiplied by 131 in the defocused case.
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points has to be limited to a fairly small number. Optical interferometric methods can be
used to obtain the mechanical surface, if the antenna surface is of optical quality on a small
scale.

The far-field of an off-set antenna structure can be calculated most accurately from the
feed horn radiation and mechanical surface properties. In a Cassegrain system, diffraction
from the subreflector and its support beams is difficult to predict, which causes inaccuracies
in the far-field pattern.

6 Conclusions
Antenna test methods for measuring the far-field pattern of a reflector antenna in the THz
frequency range have been reviewed. No method has so far been validated for this kind of
test.

One of the conventional lower frequency methods, namely the far-field method can be
discarded for certain, due to atmospheric effects.

The near-field method remains a possibility for the tests. However, a very high quality
moving stage is needed, and phase errors caused by flexible cables have to be dealt with.
Phase retrieval or amplitude-only methods overcome the latter problem. However, little ex-
perience exists on the use of phase retrieval methods above microwave frequencies. Therefore,
these methods need more work to be validated for use in the THz range.

Technically, the most feasible and least expensive method appears to be the hologram
type of compact range. In this method, a planar amplitude hologram is used to form the
required plane wave. The hologram is inexpensive to manufacture, and it is also less sensitive
to surface accuracy errors than a reflector.

In some cases, a defocusing method to bring the far-field closer can prove to be prac-
tical. The use of this method requires that the defocusing option has already been taken
into account in the satellite's radiometer and antenna design. An alternative possibility is
mechanical reflector surface measurements and accurate measurement of the feed system
phase and amplitude patterns, followed by a reflector radiation pattern computation. This
can be considered only as a marginal alternative, if other methods are not available.
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