Low Noise, Superconducting Hot-Electron Microbolometer Mixer for Heterodyne Detection at 0.5 to 2 THz with Gigahertz IF Bandwidth

Daniel E. Prober Dept. of Applied Physics, Yale University^{*} PO Box 2157, New Haven, CT 06520-2157

Abstract¹

We present a new device concept for a mixer element for THz frequencies. This uses a superconducting transition-edge microbridge biased at the center of its superconducting transition near 4.2 K. It is fed from an antenna or waveguide structure. Power from a local oscillator and an rf signal produce a temperature and resulting resistance variation at the difference frequency. The new aspect is the use of a very short bridge in which very rapid (<0.1 ns) outdiffusion of hot electrons occurs. This gives large intermediate frequency (if) response. The mixer offers \approx 4 GHz if bandwidth, \approx 80 ohm rf resistive impedance, good match to the if amplifier, and requires only 1 - 20 nW of local oscillator power. The upper rf frequency is determined by antenna or waveguide properties. Predicted mixer conversion efficiency is 1/8, and predicted receiver noise temperatures are 260K and 90K for transition widths of 0.1T_c and 0.5 T_c respectively.

* Research supported by NSF DMR 9112752 and NASA NAG 5-1244

¹ Related paper to appear in Applied Physics Letters, April 26, 1993

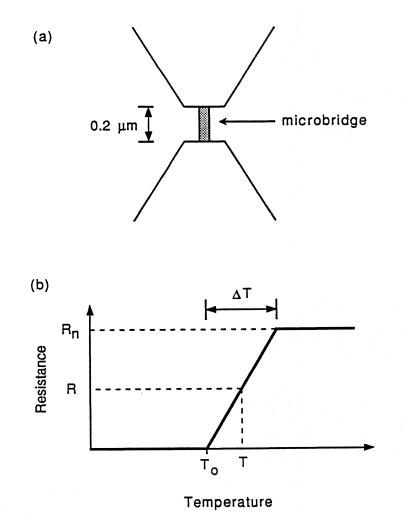


Fig. a. Layout of microbridge mixer; bridge is shaded, thick pads are unshaded; b. Resistive transition with bridge biased at R and T.

Table - Device properties for Nb microbolometer mixer, this work.

T = 4.4 K; receiver conversion efficiency $\eta = 1/10$ for computation of T_R . For a planar antenna or corner-reflector mount, a smaller value of η is realistic, and the values of T_R (DSB) would be larger than given below.

R _n	80 ohms
Dimensions (µm ³)	0.2 x 0.05 x 0.01
G	0.8 x 10 ⁻⁸ W/K
S ($\omega = 0$) for $\Delta T = 0.1T$	1.1 x 10 ⁵ V/W
P _{lo} for $\Delta T = 0.1T$ $\Delta T = 0.5 T$	1 nW 5 nW
τ	0.04 ns
IF response (-3db)	4 GHz
T _R (DSB) for $\Delta T = 0.1$ T $\Delta T = 0.5$ T	260 K 90 K