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ABSTRACT

The quantum theory of mixing is essential for the interpretation of experimental

superconducting quasiparticle (SIS) mixers. When the bias and tuning parameters are

known, the theory is quite successful at predicting the mixer performance, gain and noise

temperature. However, the theory usually predicts much higher conversion gain for some

other set of bias and tuning parameters, and this is not seen in experiment. Thus the theory

is less useful for engineering design of SIS mixers. We believe we have resolved this

longstanding discrepancy. We find there are two distinct "optimum" operation modes for

ideal SIS mixers. The high gain mode predicted by the theory will not be accessible in real

experiments. To understand this we present the equations of a DSB SIS mixer in a novel

form, in terms of the complex plane phase angle between the amplitude modulation input

admittance vector and the local oscillator input admittance vector.

INTRODUCTION

Classical mixer theory does not apply to heterodyne mixers operating at a frequency

co high enough that the voltage scale of the resistive nonlinearity is smaller than hie. The

quantum theory of mixing [1] developed by J.R. Tucker must be used. Tucker's theory is

very successful in describing the superconductor-insulator-superconductor (SIS) quasi-

particle mixer. In particular, if the operating parameters of an optimized mixer can be

independently determined, the theory predicts the IF conversion gain quite precisely [2,3].
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Yet there is a major discrepancy between the theory's predictions and the experiments.

From the earliest attempts [4], the best SIS mixers have had low to moderate conversion gain

(as high as 10 dB in two experiments [5,6]), but optimized computer fits to these experiments

often predict very high to infinite gain. In fact, it appears that for some set of bias and

tuning parameters the quantum theory of mixing always predicts considerably higher

conversion gain for high quality SIS junctions than can actually be achieved in experiment.

This is true even when harmonic effects and saturation are taken into account.

One clear early example of this is Ref. [7]. There the highest conversion gain

achieved was 4.3 dB, and the theory reasonably predicted that value using measured

operating parameters. However, the theory also predicted conversion gain higher than 20

dB for a different set of operating parameters. In this experiment the junction capacitance

was large, so harmonic effects could be safely ignored.

We believe we have resolved this longstanding mystery. We find there are two distinct

and disjoint "optimum" operation modes for ideal SIS mixers which are predicted by the

quantum theory of mixing. One mode has very high or infinite IF conversion gain, and the

"reflected" power (the signal reflection gain and the signal-to-image conversion gain) is

extremely high as well. The other mode has moderate IF conversion gain, but the reflection

gains tend to be very small. The high reflected power implies that the high gain mode will

not be accessible in real experiments. Therefore, eliminating the high gain solution in

computer simulations should give much better agreement with experiments.

CALCULATIONS

In a typical experiment the gain of an SIS mixer is maximized by varying the dc bias.

the LO power, the embedding impedances, etc. When this procedure is attempted in

calculations, however, the quantum theory of mixing predicts infinite gain for high quality

SIS junctions over a wide range of parameter values. There is no unique optimum bias

point. To avoid this difficulty, and to make our calculation as realistic as possible, we take as

our figure of merit not the gain but the minimum value of the SSB (single sidebancl)

receiver noise temperature

TR = TM TIF/ gIF °
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Thus our calculation involves a trade-off between minimizing the mixer noise temperature

TM and maximizing the mixer conversion gain which is mediated by the noise

temperature of the IF amplifier TIF.

gIF,

The equations used to calculate TR are taken from Ref. M. Only a few are presented

here. We consider a DSB (double sideband: equal signal and image termination) mixer in

the three-frequency low-IF approximation, which should be a fairly good representation of

most well-designed experimental mixers. For a DSB mixer the thermal noise from the

image termination does not affect receiver optimization, so for convenience we assume zero

physical temperature and the thermal noise simply reduces to the quantum noise temper-

ature of the mixer, ho)/2k. We ignore the thermal noise from the IF termination which is

reflected from the mixer back into the IF amplifier, although this can be an important factor

for real SIS receivers. We ignore any interference from the Josephson effect.

The standard SSB IF conversion gain of a DSB SIS mixer (Ref. [l]. Eq. 4.74) can be

written in the novel form:

IF (Goo+GL)2 1(Y5+Ys')cosel2
GLGoi 2 	4Gs 

(2)

i(B + B 1-1 - Goo+G L *

2
GMGIO 2G01B10 (11= jBt; + G 1-1 - Goo+GL

IF depends upon Ys = Gs + jBs, the source admittance seen by the SIS junction at the signal

and the image frequencies, and upon the load conductance G L which represents the conduc-

tance of the IF amplifier circuitry as seen by the junction. The explicit dependence of ory'IF

upon Ys in Eq. 2 is given by a simple impedance matching formula which has its maximum

at Ys = IGI-113si . Note that Gs', which can be negative, is not the input conductance of our

mixer. ( .Y* is the input admittance in the simple amplitude modulation model of the SIS

mixer, in which the signal results from an amplitude modulation of the LO. as described in

Ref. [1], Sec. III.B.) The input admittance of the mixer at the local oscillator frequency w is

Ya) E ILoNiso = GC° +.03 1 '.6 = G 11 - G 1-1 + i(B 11 - B1-1), (4)

where ILO is the (complex) amplitude of the current and VL0 is the (real) amplitude of the

voltage across the junction at frequency co. Of course GL°0 > 0. IF also depends upon Y.

i mplicitly. through the angle 0. e is the relative phase angle between the vectors (Ys-4-Y,') and
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(Ys+Yth) in the complex plane. Thus l(Ys+Y)I cos0 is the projection of the vector (Ys+Y;)

in the direction of (Ys+Ye0).

Equations 2 - 4 are expressed in terms of the elements of the small-signal admittance

matrix (l], Yij = Gij + jBij. Each Gij is evaluated as an infinite sum over index n of the

currents In --- Ide(Vn) weighted by a combination of Bessel functions of argument

a eVw/tio.), where Idc(V) is the unmodulated de IV characteristic of the SIS junction, Vn

+ ntico/e, and Vo is the dc bias voltage.

We pay close attention to the reflected power. The signal reflection gain and the

signal-to-image conversion gain of a DSB mixer in the three-frequency low-IF

approximation are respectively:

Ys Y*; Ys - Yeo* +Ys Ys Ys Ylb

1 I Y s* - - Y CO 

4cos2e Ys + Ys Yth

Note that the explicit dependence of gs and g i upon Ys is given by the interference of two

voltage reflection coefficients. Although high IF conversion gain might seem advantageous

in the context ot" Eq. 1, when g /F is infinite both gs and 21 (and in fact the output power at

all sideband frequencies [8]) are infinite as well, clearly an unstable situation. In this paper

we will show that the IF conversion gain can he sizable even if an SIS mixer is operated far

from instability, with very small reflected power.

There has been little appreciation of gs and g i in the literature. An exception is Ref.

[9], which enforced an approximate signal input impedance match. But a preliminary

version of the present paper [10] is the first to mention the signal-to-image conversion gain

of an SIS mixer in any context.

To simplify our calculations we will ignore all reactances: in Eqs. 2 - 6 each

admittance Y is replaced by its conductance G, and cose = I. This entails the controversial

assumption that the quantum susceptance has no significant effect. It has recently been

argued that the quantum susceptance is a central element of the behavior of SIS mixers [I1].

Nevertheless, we believe that this nonlinear reactance has little effect on the performance of

an optimized SIS receiver except insofar as it affects LO impedance matching. This

question will be further addressed below.

4cos 9
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We calculated the minimum noise temperature of the SIS receiver at each frequency.

At each frequency the optimum values of Gs, Vo, and a were calculated given discrete

values for the remaining parameters and an assumed SIS junction 1-V curve. We have per-

formed these calculations for a wide range of parameters, but only a few illustrative results

are presented here. We normalize voltages to the energy gap voltage Vg, conductances to

the normal state resistance RN, and frequencies to the energy gap frequency cog eVetz.

RESULTS

The dotted curve of Fig. I shows the minimum theoretical noise temperature of an SIS

receiver for frequencies up to co = 0.2 cog, using an SIS I-V curve corresponding to the best

experimental junctions (see Ref. [12], Fig. I, "sharp"), with G I, = 0.3/RN , TIF = 3 K, and Vg =

3 mV. The smoothness of this curve hides the fact that it includes two distinct and disjoint

types of behavior. The thick lines in Fig. 2 represent the three corresponding small-signal

gains. It is seen that IF is extremely high, and gs and g l are even higher, for normalized

frequencies between 0.03 and 0.12. For other frequencies IF is more moderate but still

sizable, while gs and gi are quite small.

Frequency (GHz), for V = 3 mV

0 50 100

0.05 0.10 0.15 0.20
Normalized Frequency cofci) g

Fig. 1. The SSB noise temperature of a DSB SIS receiver optimized at each frequency.
The computation assumes a sharp 1-V curve, GL= 0.3/R N , TIF = 3 K, and Vg = 3 mV.

The dotted curve is the universal minimum of TR, the dashed curve is calculated with the
constraint G s' > 0, and the solid curve is calculated with the constraint g, 1/4.
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0.00 0.05 0.10 0A5 0.20
Normalized Frequency avo38

Fig. 2. The thick lines represent the IF conversion gain ff,F, the signal reflection gain

gs , and the signal-to-image conversion gain g,, which correspond to the dotted curve of

Fig. 1. The thin lines represent the gains which correspond to the solid curve of Fig. 1.

0.0 
0.00 0.05 0.10 0.15 0.20

Normalized Frequency caiwg

Fig. 3. Bias voltages for the optimized receiver of Fig. 1. a) The dc bias voltage

presented in units of "photon step number" (see Eq. 7), b) The normalized LO voltage
amplitude a a eV Lo/ko. The three line styles correspond to those of Fig. 1.
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We performed the same receiver optimization calculations subject to the constraint

1/4. In other words, we eliminate all results giving significant output power at the image

frequency. This results in the solid curve of Fig. 1 and the thin lines in Fig. 2. It is clear

that the reflected power constraint eliminates the high gain operating mode and so the

moderate gain mode extends continuously across the entire frequency region.

This illustrates a general feature of our results: For a wide range of parameter values

there are two distinct minima for TR corresponding to two distinct receiver operation modes.

One mode has very high IF conversion gain, and the reflected power is very high as well.

The other has moderate IF conversion gain, but the reflected power tends to be very small.

Figures 3 and 4 show that the bias and tuning parameters are very different for the two

modes. As a measure of the dc bias voltage Vo we define the non-integer generalization of

the photon step number,

Nstep e(Vg Vo)/hco, (7)

so that 0 < Ns tep < 1 can be called the "first photon step, etc. Fig. 3a shows that the

moderate gain mode is well approximated by Ns tep 0.6 on the first photon step. At lower

frequencies the optimum bias point moves to the second photon step and the moderate

gain mode has Ns tep 1.6. This behavior continues to lower frequency and is in fact a

general feature of our results: The optimum dc bias voltage for the moderate gain operating

mode (for low frequency) is always slightly below the middle of a photon step. For the high

gain mode, however, Ns tep � 0.9 on the first photon step and 1.9 on the second photon step.

Frequency (GFiz), for Vg 3 mV

4.0
50 100

0.00 0.05 0.10 0.15 0.20
Normalized Frequency coru) g

Fig. 4. The normalized source conductance Gs RN for the optimized receiver of Fig. 1,

The three line styles correspond to those of Fig. 1.
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Again, this is a general feature of our results: The optimum dc bias voltage for the high gain

mode (unlike most experiments) is always at the beginning of a photon step. Fig. 3b shows

that the frequency dependence of a is quite similar to that of Nstep.

The source conductance Gs for minimum noise temperatures is also very different for

the two modes (Fig. 4). For the high gain mode Gs is almost exactly equal to as

required by Eq. 2. The Gs for the moderate gain mode, however, has a very different

character; it is quite close to the value which minimizes the shot noise, and this in turn

follows closely the LO input conductance G L°0 [121. Note that the optimum source

conductance is in every case experimentally convenient: Gs is roughly of order 1/RN.

It is instructive to consider the mixer output conductance, G, of our optimized

receiver (Fig. 5). The high gain mode generally but not exclusively has negative GE. The

moderate gain mode always occurs with positive G. Note that in the lower half of the

frequency range of Fig. 5 the output impedance match is surprisingly good.

An important general feature of our results is that the moderate gain mode is quite

insensitive to the level of reflected power allowed. In fact, for the parameters used for Figs.

1 to 5, any reasonable constraint on the maximum allowed  from 0.1 to 10, serves to

eliminate the high gain mode but has very little effect on the moderate gain mode. This is

persuasive evidence that these two operating modes are indeed distinct. [This explains why

the G > 0 -constrained case (dashed lines in Figs. 1, 3, 4, and 5) lies quite close to the

reflected-power-constrained case (solid lines).]

0.00 0.05 0.10 0.15 0.20
Normalized Frequency o/cog

Fig. 5. The normalized output conductance GERN for the optimized receiver of Fig. 1. The three

line styles correspond to those of Fig. 1. The load conductance G L = 0.3/RN is also shown.
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The behavior we have described is quite widespread. In fact, if we had chosen a larger

value for Tip, if we had assumed some leakage current, if we had included the quantum

susceptance in generating Figs. 1 to 5, the high gain mode would predominate over a much

wider frequency range.

DISCUSSION

We understand our results in the following way. TM and IF in Eq. I are in general

slowly varying functions of their various parameters. The exception is that when G;, is

negative the quantity Gs-i-G can go to zero, giving analytically infinite IF in Eq. 2. Near

exact cancellation occurs over only a small region of parameter space. Thus we can picture

a display of TR in a multi-parameter space as having a rather sharp minimum near Gs+G ,s' =-

0 and more gradual behavior, including a broad minimum, elsewhere. These two minima

correspond to our two operating modes. Near Gs-f-G = 0 both gs and will be very large

(cf. Eqs. 5 and 6). If the vicinity of Gs+G . = 0 is forbidden (by constraining g). the

remaining minimum will be quite insensitive to the operating parameters.

This analysis supports our conclusion that were we to include the quantum

susceptance and a tuning susceptance in our calculations, the result would be very much the

same. Equation 2 shows two possibilities for analytically infinite gIF . First, Ys+Ys' can go to

zero. But even if G; > 0, it is possible for the vector (Ys+Ys') to be perpendicular to

(Ys+Yeh), giving cose = O. This means that the quantum susceptance widens the range of

possibility of infinite gain in SIS mixers (as noted in Ref. [11]), so that infinite gain can be

predicted for instance for poorer quality I-V curves and over a wider frequency range.

Nevertheless, the discussion of the above paragraph still exactly applies, but for the quantity

( Ys+Ys') cose rather than . Thus considering the quantum susceptance underlines the

importance of removing the high gain solutions in computer simulations.

In Fig. 2 that g l is always larger than gs. This is true for all of our simulations: for an

optimized SIS receiver there is always more power returned to the source at the image fre-

quency than at the signal frequency! We do not know the physical reason for this

Mathematically, it is clear from inspection of Eqs. 5 and 6 that this is a simple consequence

of the fact that the optimum Gs is always intermediate between GC0 and G. In fact gs can

be extremely small while g, is still sizable; an example is seen at low frequencies in Fig. 2.

Thus the signal-to-image gain gi is a crucial parameter.
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It is clear that the high gain mode should not be experimentally accessible. The very

large returned power makes the mixer extraordinarily sensitive to small variations in the

signal and image terminations. The high output power (at higher sideband frequencies as

well, unless they are perfectly terminated) is extremely conducive to mixer saturation. The

sensitivity of the high gain mode to mixer operating parameters implies that these solutions

are near instability and will be obliterated by noise and other processes. It appears that the

high gain mode is a mere mathematical curiosity, forgoing a direct experimental assault.

On the other hand, we show that it is possible to have moderately high gain, 8 dB for

the particular example of Fig. 2, for stable mixer operation with low noise and very low

returned power. We believe that this resolves the mystery outlined in the Introduction.

Since the high gain mode is not accessible, constraining the reflected power in computer

fitting should give much better agreement with experiments..

CONCLUSION

It is important to consider the signal reflection gain and especially the signal-to-image

conversion gain in computer simulations of SIS mixers. The computed minimum receiver

noise temperature often entails extremely high signal and image returned power. and this

type of solution is likely inaccessible in real experiments. If this mode of operation is

eliminated, it is possible to have moderately high gain with very low returned power and low

noise temperature, as seen in experiment.

Acknowledgment: This work was supported in part by NSF grant # AST-8922301.



Fifth International Symposium on Space Terahertz Technology Page 579

REFERENCES

[1] J.R. Tucker and M.J. Feldman, "Quantum detection at millimeter wavelengths," Rev.

Mod. Phys. a 10554113 (Oct. 1985).

[2] M.J. Feldman, S.K. Pan, A.R. Kerr, and A. Davidson, "SIS mixer analysis using a

scale model," IEEE Trans. Magnetics MAG-19, 494497 (May 1983).

[3] C.A. Mears, Qing Hu, P.L. Richards, A.H. Worsham, D.E. Prober, and A.V. R5isanen,

"Quantum limited quasiparticle mixers at 100 GHz," IEEE Trans. Magnetics MAG-27,

3363-3369 (March 1991).

[4] T.-M. Shen, P.L. Richards, R.E. Harris, and F.L. Lloyd, "Conversion gain in mm-wave

quasiparticle heterodyne mixers," Appl. Phys. Lett. afl, 777-779 (1 May 1980).

[5] A.V. Raisanen, D.G. Créte, P.L. Richards, and F.L. Lloyd, "A 100 GHz SIS mixer with

10 d13 coupled gain," in 1987 IEEE Ml?'-S Int. Microwave Symp. Dig., 929-930.

[6] J.A. Carpenter, A.D. Smith, E.R. Arambula, L.P.S. Lee, T. Nelson, and L Yujiri, "100

GHz SIS mixer with improved rf matching," IEEE Trans. Magnetics MAG-27. 2654-

2657 (March 1991).

[7] W.R. McGrath, P.L. Richards, A.D. Smith, H. van Kempen, R.A. Batchelor, D.E. Prober.

and P. Santhanam, "Large gain, negative resistance, and oscillations in superconduc-

ting quasiparticle heterodyne mixers," Apple Phys. Lett 19, 655-658 (Oct. 1981).

[8] M.J. Feldman, "Some analytical and intuitive results in the quantum theory of

mixing," 1 Appl. Phys. la, 584-592 (Jan. 1982).

[9] A.R. Kerr and S.-K. Pan, Some recent developments in the design of SIS mixers,"

Int. J. Infrared Millimeter Waves .11, 1169-1187 (Oct. 1990).

[10) Qing Ke and M.J. Feldman, "Reflected power effects in computer simulations using

the quantum theory of mixing," in 1992 IEEE MTT-S Int. Microwave Symp. Dig.,
1425-1428.

[11 J C.A. Mears, Qing Hu, and P.L. Richards, "The effect of the quantum susceptance on

the gain of superconducting quasiparticle mixers," IEEE Trans. Magnetics MAO 27 

3384-3387 (March 1991).

[12] Qing Ke and M.J. Feldman, "Optimum source conductance for high frequency

superconducting quasiparticle receivers," IEEE Trans. Microwave Theory Tech. MTT-

4.1, 600-605 (April 1993).


