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Abstract

The application of the FDTD technique in the calculation of the S-parameters of specific
diode mounting and waveguide probe structures is discussed in this paper. Comparative
results are given and the FDTD technique is evaluated as an optimized CAD tool.

Introduction

The finite difference time domain method is used in the RF characterization of diode mount-
ing and waveguide probe structures. A variety of excitation functions are considered and
their effect on numerical convergence is studied. One of these functions, the Gabor func-
tion, offers a wavelet-like behavior. This function is localized both in time and frequency
domain and its characteristics can be chosen such that its spectral content is centered around
a desired frequency. As a first step, a number of simple geometries are analyzed and the
FDTD results are compared to data derived through the integral equation and finite element
methods for validation purposes. The same technique has been applied to waveguide-probe
structures and the S-parameters as a function of frequency have been evaluated.

Theory

The FDTD method is formulated by discretizing Maxwell's curl equations

x (1)

at x
(2)

over a finite volume and approximating the derivatives with centered difference approxima-
tions [1]
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To obtain discrete approximations to the curl Maxwell's equations, the centered difference
approximation is used on both the time and space first-order partial derivatives. For con-
venience, the six field locations are considered to be interleaved in space as shown in Fig. 1,
which is a drawing of the FDTD unit cell. The entire computational domain is obtained by
stacking these rectangular cubes into a larger rectangular volume. The x, y and z dimensions
of the unit cell are Ax, Ay and Az, respectively. The advantages of this field arrangement
are that centered differences are utilized in the calculation of each field component and
that continuity of tangential field components is automatically satisfied. Because there are
only six unique field components within the unit cell, the six field components touching the
shaded upper eighth of the unit cell in Fig.1 are considered to be a unit node with subscript
indices i, j and k corresponding to the node numbers in the  and 2 directions. This
notation implicitly assumes the 1/2 space indices and thus simplifies the notation, rendering
the formulas directly implementable on the computer. The time steps are indicated with the
superscript n.

Due to the use of centered differences in these approximations, the error is second order in
both the space and time steps; i.e., if Ax, Ay, Az and At are proportional to il, then the
global error is 0(Al 2 ). The maximum time step that may be used is limited by the stability
criterion of the finite difference equations,

1 1< 1 1 1/. , 2
vmax Ax2 Ay2 Az2

where vmaz is the maximum velocity of light in the computational volume. Typically, vm.
will be the velocity of light in free space unless the entire volume is filled with dielectric.
These equations will allow the approximate solution of 2(r,t) and ri(r,t) in the volume of
the computational domain ; however, special consideration is required for the conductors,
the mesh boundaries and the excitation.

The electric conductors are assumed to be perfectly conducting with zero thickness and are
treated by setting the electric field components that lie on the conductors to zero.

Due to the finite capabilities of the computers used to implement the finite-difference equa-
tions, the mesh must be limited in the x, y and z directions. The difference equations
cannot be used to evaluate the field components tangential to the outer boundaries since
they would require the values of field components outside of the mesh. The tangential elec-
tric field components must be specified in such a way that outgoing waves are not reflected
using absorbing boundary conditions. For TEM structures (e.g. coaxial) the pulses will be
normally incident to the mesh walls. This leads to a simple approximate continuous ab-
sorbing boundary condition, which is that the tangential fields on the outer boundaries will
obey the one-dimensional wave equation in the direction normal to the mesh wall. For the

normal wall the one-dimensional wave equation may be written in the following form:

, a a
k ay ; -5-d E t an = 0

(3)

(4)
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This equation is Mur's first approximate absorbing boundary condition [2] and it may be
easily discretized using only field components on or just inside the mesh wall yielding an
explicit finite difference equation

Er' = vAt -I- Ay "
vdt n+1

(5)

where E0 represents the tangential electric field components on the mesh wall and E1 rep-
resents the tangential electric field components one node inside of the mesh wall. Similar
expressions are immediately obtained for the other absorbing boundaries by using the cor-
responding normal directions for each wall. The normal incidence assumption is not valid
for the fringing fields which are propagating tangential to the walls. For this reason for non-
TEM structures, the superabsorbance boundary condition is used in conjunction with the
Mur's first ABC. The superabsorbance is a 2nd order ABC which takes into consideration
both electric and magnetic fields [3].

The finite difference equations are used with the above boundary conditions to simulate the
propagation of a preselected excitation function on the simulated structure. The essential
aspects of the time-domain algorithm are as follows:

Three different functions have been used as excitations: First choice was the Gaussian
pulse

f0(t ) = C((t—to)/(pw))2 (6)

This is the most widely used excitation function, since it has the same shape in both time
and frequency domains. Nevertheless, it contains a very strong D.C. component, which can
be a possible cause for oscillations and slow convergence in structures that do not propagate
the low frequencies (e.g. waveguides).

One excitation function that does not contain D.C. component is the Gaussian pulse
derivative

f1(t)
t2o e—((t—tompw))2

PW

This function presents a better concentration around a specific central frequency than the
gaussian pulse, but is still characterized by a significant low-frequency content.

Our final choice was the Gabor function

/2(0 = e—((t—t°)/(Pw))2 sin(wt) (8)

where

\/-6-
Pw

f

U max — /min )
t o = 2pw

w f fmin . max,

(7)
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It can be easily observed that by modifying appropriately the parameters pw and w, we
can restrict the frequency spectrum of the above function in a specific region [fmin,fmaz]
(wavelet-like behavior) . As a result, we can avoid all problems associated with D.C. or low
frequency components without losing the time-bounded behaviour of the excitation function.

The above points can be easily observed from the time and frequency domain plots for all
three excitation choices, which are presented in Fig. la (Gaussian pulse), lb (Gaussian pulse
derivative) and lc (Gabor function).

Numerical Results

Numerical results have been computed for three configurations, an iris geometry and two
waveguide probes. The first two configurations were used for the validation of the FDTD
technique.

a. Rectangular iris geometry

The actual dimensions of this geometry are shown in Fig. 2a. There is a p.e.c. at the one
end of the waveguide and the Gaussian pulse excitation impinges on the other end. We
have calculated the Su. parameter using the FDTD technique at a position close to the iris.
Input impedance for this configuration may be calculated from the S 11 (w) by transforming
the reference plane for the Su calculation to the reference plane of the input impedance
calculation, through the formula

snej2kL
z 91 — Su,in = o .

el2kL ( )

where k is the wavenumber in the waveguicie, L is the distance between the two reference
planes and Zo is the dominant mode wave impedance of the waveguide. Results for the input
admittance and S11 at a plane parallel to the pec and at a distance 2a from it are shown
in Fig. 2a. These results are compared with results obtained using the lumped-element
technique and the agreement is very good (Fig. 2b)

b. Waveguide Probe

The waveguide-probe configuration of Fig. 3a was analyzed using the FDTD technique. The
two probes are embedded on a dielectric slab with er .3.8. The one end of the waveguide is
short-circuited and the Gaussian pulse excitation is applied at the other end. We calculated
the input impedance Zin between the two probes, by using the relationship

/ fi (12)

The voltage V was calculated by integrating along a vertical path connecting the two probes
and the current / by integrating along a horizontal closed loop at the plane located in the
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middle of the distance between the two probes. Though V was independent on the choice
of the paths, I was slightly sensitive to the closed-loop size. This sensitivity lessened as
the dielectric was thinner, since it was due to the displacement current inside the dielectric.
The results for the real part of the input impedance are compared with those obtained from
Moment method technique and the agreement is again very good.(Fig. 3b)

C. Coaxial-fed probe

The geometry of Fig. 4a is similar to the geometry of the probe discussed above. Again, we
had two probes embedded on a dielectric slab inside a waveguide. One end of the waveguide
was short-circuited and we calculated the input impedance between the two probes. Never-
theless, there is a major difference between (B) and (C). Now the probes are coaxial (center)
fed, however in (B) the excitation was applied at the input of the waveguide. That means
that in (C) we have a near-field excitation, though in (B) we had a far-field.

As a first step of our simulation, the excitation pulse was impressed in the region between
the two probes and we tried to calculate the input impedance by use of the formulas (10) -
(12) . This effort was unsuccessful, since the value of the current I became very sensitive on
the size of the horizontal closed loop. This was due mainly to two factors, the displacement
current and the fact that the edge conditions could not be perfectly satisfied.

To avoid the above problems the whole structure with the coaxial feed was analyzed. The
feed was simulated with a rectangular 50f/ coaxial with 4.2.2. The excitation pulse was
applied at the input of the feed-line. In this way the problems coming from the near-field
excitation vanished and the input impedance lev'6s calculated by use of the formula

zin
1 + Su 

= Zo (13)
1 — Sri

The results for the Su are presented in Fig.4b . There is total reflection below the waveguicie
dominant mode cutoff frequency (2.89G11z). Above this frequency, propagation inside the
waveguide magnifies and Su starts decreasing.

We have to emphasize on the fact that around resonance, the calculation of Zin from Sn by
use of the above formula is characterized by very high numerical errors. For example, 1%
error in Su (0.993 instead of 0.983) due to computer round-off errors causes 145% error in
Zin (14236 instead of 5832 Ohm). As a result, the values of Zin around resonance have no
significant practical meaning.

Autoregressive predictors have been used to extrapolate accurately the calculated field values.
As a result, the execution time has been reduced drastically by one order.

Conclusion

The finite-difference time-domain method has been used to perform time-domain simula-
tions of pulse propagation in several waveguide probe and diode mounting structures. The
frequency-dependent scattering parameters and the input impedance have been calculated by
a Fourier transform of the time-domain results. These results have been verified successfully
by comparison with other numerical techniques and with measured data. The versatility of
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the FDTD method allows easy calculation for complicated structures. As the computational
power of computers is rapidly increasing, this technique is very promising for the CAD of
many types of waveguide probe and diode mounting structures.
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