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Abstract
A set of design criteria are presented which are required of varactor diodes for use in

practical wideband circuits. These include: high power handling, low in-circuit Q, tolerance
to input power variations and reasonably high real impedance. To better meet these criteria,
a modified planar varactor diode is proposed, in which the varactor junction is dc isolated
from the circuit so that it will self-bias to the correct operating point. The required structure
may be made as a simple modification to a conventional planar varactor, by replacing the
ohmic contact with a Schottky contact. This diode is ideally suited for anti-parallel operation
in tripler circuits. The behavior of the diode in a wideband circuit is discussed, as well as
various means to characterize devices which can not be measured at dc.

Varactor Design Criteria
A large number of novel varactor diodes have been proposed recently with antisyrnmetric

CV curves intended for use in triplet circuits [1,2]. In most cases, the design has been based
solely on the predicted efficiency in an optimized embedding circuit. Depending on the
application there are many possible criteria that may be required for varactor diodes. Not
all of these are relevant in every case, but the important point is that there is a lot more to
consider than just a cutoff frequency. This list should make it clear that there needs to be a
synthesis between the user, the circuit designer and the device fabricator. A particular point
which must be made about evaluating the properties discussed below is that the in-circuit
behavior of nonlinear devices can not be assessed without the use of a large signal circuit
simulator. In the case of back to back devices, this simulation is particularly critical, because
the rf pump produces a CV characteristic which may be very different from that measured
at dc.

1. Efficiency at a useful power level. For nearly all devices it is easy to make a low power
device by simply reducing the junction area. Since this has the effect of raising the effective
impedance level, it presents no problem to the circuit designer. High power devices are much
more difficult to make. Simply increasing the area will work, but large area diodes have
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very low impedances and make matching difficult. Power handling may also be increased by
raising the breakdown voltage of the diode, but this also raises the series resistance. Making
devices in series tends to be the most effective way to handle high power. Most devices are
also prone to carrier velocity saturation at some power level (or frequency) and this must
also be considered.

2. Conservative design. Most devices work best near the upper end of their power range,
but this should not be right on the edge of destruction. Heat sinking should be a part of
the design. The desired input power should not drive the device into breakdown, although
rf breakdown appears to be less of a problem than circuit simulators would predict.

3. Wideband impedance matching. The device should have a low Q (ratio of reactance
to resistance) at both the input and output frequency for best bandwidth. The in-circuit
impedance values must be derived from a nonlinear circuit simulator, and have little relation
to R, and C2 (0). A Q of 3 at the input and 1.5 at the output is typical for a tripler under
optimum load, although these Q values tend to increase significantly under nonoptimized
conditions. Any higher optimum Q will seriously degrade the performance of full waveguide
band multipliers.

4. Reasonably high real part to the optimum embedding impedance. Depending on
frequency, this should be at least 25 ohms and even higher for submillimeter devices.

5. Efficiency and impedance level over a reasonable power range. In order to make real
multipliers for system applications, there should be at least a factor of two power range for
nearly optimum operation, and over this range the optimum circuit impedances should not
change significantly.

6. For planar diodes the device package should include enough inductance for matching at
the output. The package parasitic capacitance must be very small compared to the average
junction capacitance for best bandwidth. While for general applications, a low level of
integration on a chip is desirable, a highly integrated approach may be necessary for really
wide band circuits.

7. A device with a voltage tunable junction capacitance is very helpful because it may be
tuned to fit the mount. A nontunable device forces higher standards on the mount, and this
may make fabrication very difficult. The absence of a bias port simplifies the mount and in
some applications this may be very valuable.

8. The advantage of antisymmetric devices is primarily in the ease of fabricating triplers
with wide bandwidth. In narrow band triplers it is fairly easy to provide the correct second
harmonic terminations without much extra complexity. Antisymmetric devices also may
permit the fabrication of quintuplers with only one idler. This would be a real advantage in
the submillimeter even if the circuit has narrow bandwidth.

Schottky Varactor Advantages and Limitations
In reviewing this list, it appears that the conventional abrupt junction varactor still com-

pares favorably to all other devices considered so far. It is a proven device; high power
and efficiency have been achieved with practical planar devices, and moderate bandwidth
(AM, 0.2) circuits have been built successfully. Its limitations tend to be of the same
sort as with other types of devices, and include the need to provide very different inductances
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at the various circuit harmonics, and the need for idlers in higher order multipliers.
One of the primary drawbacks to conventional Schottky varactor diodes has been the

need to provide bias to the diode. Under typical operating conditions this bias is  .3 — .4
times the breakdown voltage, applied in the reverse direction. Providing bias requires dc
connections to the diode, with appropriate filtering, adding complexity as well as loss to the
circuit. While bias is frequently applied by an external voltage source, under sufficient drive
power a varactor will develop enough forward current flow to self-bias given the proper dc
load, which is typically a high impedance.

In some cases such bias connections are only a minor problem, and may be incorporated
somewhat naturally into the circuit. One such case is the balanced doubler [3}, in which the
pair of diodes have the same polarity with respect to the coupling line to the output circuit,
and in which it is fairly easy to decouple the rf output from the bias. In other cases, the need
for bias complicates the circuit sufficiently to make it quite difficult to implement.

The balanced tripler using an anti-parallel pair of diodes is a particularly good example of
this problem. This circuit is quite desirable because it produces odd haimonics only, but the
parallel connected diodes must be provided with equal and opposite bias. This means that
while they are rf connected they must be dc isolated, and that two separate bias ports must be
provided. While practical circuits may be built, they are complex and require split or overlaid
rf lines to introduce bias, and such circuits become very difficult to build in the submillimeter
range. Because this circuit is free of even order harmonics, and because the required second
harmonic idler current circulates within the loop of the two diodes (independent of any
external circuitry), it is particularly suitable for wide band triplers. It has little advantage
in narrow band applications, in which a single diode can work very well, and bias circuitry
is not very complex.

Planar Diode Modifications
This paper suggests a rather simple modification to the processing of planar varactors

which can provide internal bias to the diode, so that the dc terminal voltage is zero yet the
varactor operates at optimum bias. The basic concept is to add a second diode with the
opposite polarity in series with the varactor, as shown in Fig. 1. This second diode has a
very large area relative to that of the varactor, so that its effect on the if circuit is negligible,

VARACTOR DIODE
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Fig.1. Varactor diode with large area diode in series to allow varactor to self-bias.
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but it changes the dc behavior of the circuit. Assume that the dc voltage across the pair
of diodes is constrained to be zero. With rf power applied, initially both diode junctions
are at zero bias. The rf voltage across the varactor can cause forward current flow only, so
the charge on the terminal between the diodes is depleted, and the varactor becomes reverse
biased. Since this reverse biases the second junction, no charge can return via this route,
either. This second junction has negligible rf voltage across it because of its high capacitance.
Eventually, the reverse bias voltage reaches a steady state when nearly the entire rf voltage
swing across the varactor is in the reverse direction. One extreme is at a small forward
voltage to just balance the reverse leakage. The operating point which is achieved is almost
optimal for varactor operation, because the bias seeks the point where no forward current
flows. If the rf power continues to increase, the voltage swing will eventually reach reverse
breakdown. At this point the bias will stabilize at the point where equal forward and reverse
currents flow. This is not necessarily desirable, because typical varactors can not handle
significant reverse current flow. It is also hard to predict the exact power level where this
will occur, so there is no easy way to avoid over driving the diode.

It is preferable to operate the varactor with a fixed voltage bias, which is chosen for
optimum performance at a given power level, and which keeps the circuit working in a similar
fashion over a range of power. If this voltage is set to about 0.35 %, then optimum pump
will fully modulate the diode between forward conduction and reverse breakdown, while the
reverse current will increase slowly for higher power levels, since the voltage swing instead
is forced to go into forward conduction. It is easy to achieve this constant bias operation by
causing the series diode to have a breakdown voltage of  0.35 V(varactar). This diode willb 

begin to conduct at this voltage and will let charge back into the isolated terminal, preventing
it from going more negative. Except that this diode is internal to the circuit, the behavior is
the same as that with an external bias zener diode.

It is remarkable that the structure required to achieve this behavior is very easily built.
It can be made with only a small modification of the standard processing involved with a
planar varactor. Consider the typical planar diode shown in Fig. 2. The junction itself is
a small metallized pad on top of a thin moderately doped epi-layer, which is in turn on top
of a heavily doped, highly conducting layer. This active junction is surrounded by a much
larger metal pad which is connected to the highly doped layer through an ohmic contact. The
ohmic contact is a graded junction which is made by thermally diffusing a high concentration
of carriers into the semiconductor in such a way that no barrier is created, so that the metal
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Fig. 2. Typical planar diode cross section.
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pad is effectively connected to the highly doped layer. Ohmic contacts are a limitation to the
fabrication of planar diodes because they require a minimum area to achieve a sufficiently
small resistance, and creating them is a somewhat poorly understood process. Ohmic contacts
have traditionally been required on all diodes, because the usual application has been in
mixers, where substantial bias current must flow, and where intermediate frequencies may
be very low compared to the signal and LO frequencies. This method of fabrication has
been carried over into varactor diodes without much consideration as to whether it is still
necessary.

If the ohmic alloying step were eliminated, the large area junction would become a second.
Schottky diode, creating the situation described above. If nothing else were done, this junc-
tion would have the same breakdown voltage as the varactor, and the questions about the
operating bias would remain. However, the epitaxial material may be thinned so that this
junction breaks down at a lower voltage, and this thinning is very easily controlled, since this
type of processing is used in all diode fabrication. It appears that this new structure would
be nearly ideal, except that the IN curve of the varactor can no longer be measured at dc.
This may not be entirely bad, since dc characterization frequently is misleading, although it
does serve as a convenient means to screen out really bad diodes. There are a number of ways
to measure R, at microwave frequencies, and one possible probe configuration is described
later.

This diode still requires a dc connection between the terminals to maintain them at the
same voltage. This occurs naturally in some circuits, so it is not always a problem, and
in the case of the antiparallei diode tripler, the diodes provide their own dc connection.
This is because the internally developed bias currents have opposite polarities, and thus flow
entirely within the loop formed by the two diodes. Assuming that the diodes are identical,
they receive equal power from the pump, and so the bias currents will be the same. In this
ideal case, the end terminals remain at the same voltage. The bias remains stable against
reasonable variations in diode parameters. Even if one diode is larger and receives more of
the input power, the voltage swing across it will be the same as that of its mate. Thus reverse
breakdown through the bias diodes begins at the same power level, but the current through
the larger varactor increases faster. This current imbalance forces the bias voltage on the
larger diode to increase, and that on the smaller one to decrease until the currents are in
balance. This situation is stable because with this distribution of voltages the larger diode
is driven to lower capacitance, while the smaller diode is driven to higher capacitance, and
the power coupled tends to become more equal. The final state will have some voltage across
the terminals, which is not inherently bad if it is small relative to V.

Requirements for the Bias Junction
We now need to define the actual requirements for the bias junction. The most important

is its capacitance relative to that of the active junction. From a circuit standpoint, the bias
junction should have a reactance very small relative to that of the active junction so that
it does not raise the Q of the varactor circuit. This is particularly important for wideband
applications. This requires that the bias junction at reverse breakdown have a capacitance

30 times that of the time averaged capacitance of the varactor. Typical varactors have a
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time averaged capacitance 0.4 times C3 (0), while the rather thin bias junction is biased to
its minimum value. For such a thin junction this is not much less than that at zero bias (let
us assume 0.7 C3 (0)). Then to maintain a factor of 30 ratio, the area of the bias junction
should be 17 times the varactor area, which is a very modest constraint.

A second constraint is that the bias junction must be able to carry enough current in
breakdown to stabilize the bias without being damaged in the process. While some multipliers
operate with very low bias current, this is not the rule, and particularly in the case of very
wideband devices, best operation tends to occur with 1 mA of bias current. The reason
for this is that operation slightly into the forward bias region lowers the time averaged
reactance of the diode, lowering its Q, while the power lost in the bias circuit is not serious
for a current of up to mA. This bias current is really only this large at relatively low
frequencies (< 150 GHz input), and will become smaller as less input power is available.
There is little data on the ability of Schottky diodes to carry continuous avalanche currents,
and the damage usually occurs at areas of current concentration. It is routine to test the
breakdown of lp,m diameter diodes at lpA without apparent damage, so in principal, a 30pm
diameter anode should be able to carry lmA. However, the fabrication of diodes to carry
this current safely may require special care in processing.

These constraints appear to be less restrictive than the present requirement for the area
of ohmic contacts, and have the advantage that the required area drops with increasing
frequency. This is particularly important in the submillimeter, because ohmic contacts of
the conventional size become inconveniently large even by 300 GHz.

Measurements of Diode Properties

It is essential to have some means of testing diodes outside of the complete circuit. Without
independent tests, there is no way to determine how well the circuit is actually performing.
Diode pairs present problems in isolating the quality of the individual elements, while the dc
isolated diodes proposed here present additional problems. Let us first consider the problems
in characterizing single diodes with dc isolation.

Measuring capacitance is little different than with conventional diodes. Since the bias
junction is so large, it may be ignored in the capacitance measurement. Its only effect is
to add its forward voltage to the total voltage across the device in the measurement of the
C/V characteristic. The bias junction becomes reverse biased when the varactor is forward
biased, but by using current bias, the forward region may be safely measured.

The series resistance is critical, and can not be measured at dc through the bias diode
since its breakdown characteristic is not well known, and this junction may not be able to
handle sufficient current in any case to permit accurate determination of R3 . This leaves rf
measurements as the only practical means. This is a problem for on-wafer tests, so some
diodes on a wafer could have ohmic contacts in order to check the process. In principal, the
complete diode parameters can be determined through one port measurements using a vector
network analyzer with conventional 50C2 wafer probes at some high microwave frequency, but
in fact, the accuracy will be poor because the impedance is so highly reactive. It is essential
to tune out the reactance of the diode in order to achieve reasonable accuracy. This could
be done by adding an inductance at the end of the probe line, or by otherwise modifying the
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Fig.3. Schematic diagram of DeLoach fixture for testing varactor diodes.

probe to improve the match into a capacitive load.
One variation on this approach is the DeLoach fixture [4], in which a diode plus a suitable

inductance are placed in shunt across a transmission line, as shown in Fig. 3. The frequency
is swept over a wide band, and one measures the transmitted power on the resonance of
the diode with the circuit, where it best shorts out the line. Any parasitic capacitance
of the diode will somewhat alter the measured resistance, and require some interpretation
of the data. While such measurements may require some special test fixtures, they have
the advantage that Rs may be measured at a high enough frequency to be meaningful for
predicting performance. In fact, a fixture in the 75-110 GHz band seems quite practical, and
has the advantage that the diode is measured at a frequency near that of its actual use

Evaluation of Anti-parallel Diodes
Anti-parallel diodes present special challenges in measurement, in order to determine the

match between the properties of the diodes. The average resistance and capacitance at
zero bias may be measured exactly in the way that they would be for a single diode. The
match in properties may be determined if the measurement is made with bias applied with
opposite polarities at a level sufficient to slightly forward bias each junction in turn. In
measurements of Rs with a DeLoach fixture, this bias causes the capacitance of one junction
to be much larger than that of the other, so that its resistance dominates the measurement.
Some modeling is required to interpret the measurements, but the needed data is available.

The match in junction capacitance may also be derived from these measurements, using
the change in resonant frequency with bias, but the same data may be as easily obtained
with conventional capacitance bridge measurements. The total capacitance of the pair can
be measured and a correction for fringing fields applied by measuring a sample with broken
contact fingers. The interpretation of this measurement requires some modeling. There is no
way to accurately measure the capacitance-voltage characteristic of the pair since the voltage
distribution across the series diodes is not uniquely determined except for a bias voltage high
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enough to breakdown one of the bias diodes, and in this case the capacitance is dominated
by that of the forward biased diode. The interesting capacitance in the reverse direction is
poorly measured, but can be measured at the batch level by breaking the contact finger on
one diode of the pair.

DIODE

DIODE

Fig. 4. Simplest circuit for a pair of varactors connected in anti-parallel.

Circuit Requirements for Tripler
All varactor circuits require inductive terminations at all harmonics, with the effective

diode capacitance nearly the same at all harmonics. If the optimum inductances at the first
three harmonics are defined as L i , L2 and L3: L1 = 4L2 , and L3 = 0.44L2 . The second
harmonic currents are critical to operation of a triplet, so the idler inductance must be near
optimum. Since the optimum real parts of the input and output impedances are less than
their respective reactances, providing these correct inductances is also critical.

A major design challenge is to include enough inductance for the idler without increasing
the circuit reactance at the output. Since the idler currents with anti-parallel diodes circulate
in a loop , this loop must have the correct inductance. The simplest circuit shown in Fig.4
has problems in this respect. In this circuit, the mutual inductance of the parallel lines
causes the inductance for odd harmonics to be greater than for even. To minimize this
effect, the lines must be widely separated, and providing this separation in a microstrip or
stripline environment is impossible. If the situation is accepted, then it is necessary to add
capacitance in series with the output to tune out the excess capacitance, which decreases
the circuit bandwidth. If we reverse the direction of the coupled lines, the situation changes.
Now the inductance for odd harmonics is less than for even, and it becomes possible to
provide optimized second and third harmonic reactance simultaneously. However, the circuit
realization is not simple, as shown in Fig. 5. This layout requires a crossover, and extensive
analysis in order to work out a feasible geometry. A preliminary study shows that such a
layout is practical, but further work is required.
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Fig. 5. Anti-parallel diode pair using mutual inductance of coupled lines to increase
second harmonic inductance.

Conclusions
A modified construction of a planar diode is presented which eliminates the need for

an external bias circuit for varactor applications. This diode must be tested at microwave
frequencies, but various means are available to do this. The new diode is particularly well
suited for anti-parallel operation in tripler circuits, but a suitable circuit still needs to be
developed.
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