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1 Introduction

The behaviour of superconducting microstrip transmission line has been investigated by
a number of authors [1, 2]. The techniques used range from conformal transformations
through to complete full-wave analyses. Despite this work, it is still difficult to know
which approach should be used for designing submillimeter-wave circuits, and indeed the
degree to which the various approaches agree. Clearly, every method has its strengths and
weaknesses, and to some extent the suitability of a technique depends on the particular
application being considered. Clearly, an important consideration is the ease with which
a procedure can be used. It might be argued, for example, that full-wave analyses are
best, but such calculations require large computers and are slow to use. In many cases
simple closed-form expressions may give the required degree of accuracy. Moreover, it is
often important to be able to analyse the behaviour of circuits working at frequencies close
to the gap and at temperatures approaching the critical temperature; in these cases it is
desirable to use a simple perturbation approach which can be integrated with standard
methods for characterising the surface behaviour of superconductors.

In this paper, we present a complete design procedure for millimetre wave and submil-
limetre wave superconducting microstrip transmission lines. We wish to take into account
the thickness of the film and the nonuniform current distribution on the strip. In the case
where dispersion due to the size of the line is unimportant, a rigorous conformal mapping
technique is used. This approach applies to structures much smaller than a wavelength
and films that are relatively thick. For large structures where dispersion due to the width
of the strip and the inhomogeneous dielectric is important, a spectral-domain approach
is effective. This method gives accurate results for the modal dispersion but is normally
restricted to thin films. Our treatment, however, allows the thickness of the film to be
incorporated. This modification is achieved by defining and then calculating an effective
strip width w; whose value depends on the geometry and in particular on the thickness
of the strip conductor. The value of wj is, in general, different from the effective width
w; used in impedance calculations. The latter is based on fringing considerations and is
always greater than the physical width of the strip; w;, on the other hand, is based on
loss calculations and is always less than the physical width of the strip. An important
consequence of this modification is that the singularities, which appear in the integrations
when calculating the loss, are avoided. A general advantage of our technique is that it can
be applied to other planar transmission-line structures such as coplanar waveguides and
coupled, overlapping microstrip lines.
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2 General TEM analysis

For convenience, we write the series impedance and the shunt admittance of a TEM
transmission line in the form (3, 4]

Z = j(kono)g1 + 2922, (1)
v =) (%) @

where k, is the free-space wavenumber, 7, = 1207 is the impedance of free space, Z, is
the surface impedance of the conductors, and €y, is the effective dielectric constant—
in the modal sense. g; and g, are geometrical factors, which characterize the particular
transmission line being used. Here, we have neglected dielectric loss and assumed that the
strip conductor and ground plane are made of the same material; both of these assumptions
can be relaxed if required. According to the above formalism we have divided the total
field into two parts. The first term in equation (1) characterizes the field external to the
conductors and the second term characterizes the field internal to the conductors. Clearly,
the challenge is to derive accurate expressions for g; and g2. In the case of a microstrip
transmission line, it is convenient to express the geometrical parameters in the following

I

forms:
h
g1 = :“7{7 (3)
_ K _ (Fg + Fs)
g2 = o ow (4)

where Ky is the fringing factor, defined as the ratio between the impedance of an ideal
parallel-plate waveguide having width w, dielectric thickness k, and no fringing field and
that of the actual strip transmission line, both in a homogeneous dielectric. F; and F,
are the ratios of the power dissipated per unit length in the strip and the ground plane
respectively compared to the values obtained for a parallel-plate line having strip width
w, zero strip thickness, and a uniform current distribution over the surfaces internal to
the waveguide with no current elsewhere. Normally F, is much greater than F; due to the
current on the strip being confined to a smaller region. Following Pucel et. al. [5] we can
write

fc IJS(E)Izdg
([ 17:(€)ldg)*

where { = z/w. In this expression, J,(£) is the longitudinal current distribution on the
surface of the strip, and the integration is carried out over the strip boundaries. An
equivalent expression can be written for F;. We can now see that if we restrict the flow
of current to the inner surfaces of the conductors then F, will be greater than unity
because of the additional loss and energy storage which arises from the sharp increase in
the current density near the edges. If, however, we allow a significant amount of current
to leak to the sides and back of the strip, then F, may assume values of less than unity.
In conclusion, we have reduced the problem of calculating the loss and determining the
effect of superconductivity to that of finding Ky, Fy, and F;.

(5)

s

The complex propagation constant of the transmission line can be determined in the
usual way through v = (ZY)I/ 2 = a + jB. If we apply our expressions for the series
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impedance and the shunt conductance we find

_ J'2xZ,] 1/2
B = fnBe |1 - T (6)
where
x = KiKy (7)
and
Bm = kO(éfm)l/z (8)
is the modal propagation constant. Also, we find for the attenuation constant
_ J'2xZ,] 12
a=—PnpIm [1 Fomoh . (9)

From the above equations we notice that the complex propagation constant of a mi-
crostrip line is increased by the factor in brackets when the line becomes superconducting.
This slow-wave effect is due to the kinetic inductance associated with the energy stored
in the electron pairs. The dimensions of the microstrip line influence the propagation
constant not only through the modal value but also through the effect of the surface
impedance; clearly, the geometry effects both the external and internal fields. The modi-
fication that results from field penetration is parameterised by the quantity x, which we
shall refer to as the penetration factor. Assuming that the penetration depth is much less
than the thickness of the dielectric, x gives the factor by which the loss of ordinary mi-
crostrip is greater than that of an idealised parallel-plate waveguide. x takes into account
the increase in the attenuation constant caused by the current distribution not being uni-
form and the characteristic impedance being lowered by the fringing field. We will show
later that for practical dimensions 0.8 < x < 1.5.

3 The conformal mapping method

It is clear that once Ky and x are known it is straightforward to calculate the propagation
constant. In the case of tiny submillimetre-wave microstrip lines where dispersion due
to the dielectric interface can be ignored, but the thickness of the film must be taken
into account, it is possible to calculate K; to high precision by using two conformal
transformations. First, a strip of finite thickness in the Z plane is transformed into a
slotline with a very-narrow gap and infinitely thin plates of slightly different widths in
the W plane. Next, the W plane is transformed into the Z’ plane where a parallel-plate
waveguide of slightly different plate widths is obtained. This approach was adopted by
Chang [2]. Defining

p = 2b%—1+2b(b% —1)Y/2 (10)
b = 1+t/h (11)

where t/h is the thickness of the film divided by the height of the dielectric, we find

h 2 2rb
K=z () (12)
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ra and 7b are respectively the locations of the images, in the W plane, of the centre points
on the inner and the outer sides of the strip. Chang provided analytical expressions for
ra and b in terms of the width and thickness of the strip.

Accommodating film thickness when calculating power loss is a notoriously awkward
problem. Unfortunately, this calculation is essentially the one we need to do in order
to assess the effects of superconductivity. Here we will develop further the conformal
mapping technique of Assadourian and Rimai [6]. To calculate the loss we transform the
microstrip geometry from the Z plane to the W plane and then perform the appropriate
current integration in the W-plane [6]:

P=Rs: / |E(W)?

| 1w (13)

where we require the Schwarz-Christoffel transformation in differential form, which in this
case turns out to be

—_—= . 14
iz~ Y (WL AW +p) P (14)
The field in the W plane is simply given by
Eoh
BW)| = |22 (15)

where E, is the constant field that would result if the strip where infinitely wide.

These integrals can be evaluated analytically and after some manipulation we find

Isl+Is2+Igl+Ig2+ =
= 2 1
2Tn (rbjra) for w/h < (16)
Is1+Is2+Igl+1Ig2+ 7 .
= th s 1
X 5Tn (2rb/ra) otherwise; (17)

where for the bottom surface of the strip we get

Isl = In [210 —(p+1)ra+ 2@]
ra(p — 1)

Ra (1 - ra)(p — ra); (18)

for the top surface of the strip we get

i (p+1)rb— 2p — 2/pRb
Is2 = —-In [ 1) ]
Rb = (rb-1)(rb-p); (19)

and for the ground plane we have

Igl = —h[(p+1)rb+2p+2\/m—’]
rb(p— 1)
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and

1 7
12 = In (p+1)ra+ 2p + 2+/pRa
ra(p—1)

Rd = (ra+1)(ra+p). (21)

These expressions are simple to evaluate, and we believe that they are probably the most
accurate analytical expressions for calculating the loss of a microstrip line available in the
literature.

The above equations are based on the assumption that the field in the W plane is
closely related to that of a coaxial line. We can test this assumption by using the second
conformal transformation, which maps the slotline in the W plane into a parallel-plate
capacitor in the Z’ plane. A more accurate expression for the field in the W plane then

becomes
hE, 2rb
Using the above expression, we can now calculate the penetration factor:
1 rb 4rb?pt/? |dW
rb?p'/? |[dW| (23)

xX= 2In(2rb/ra) Jra

(2rb+ WPW [(W + 1)(W + p)]"/?|

where the integration is calculated over the ground plane W = r and over the surface of the
strip W = —r. We have evaluated these integrals, and compared the result, in Fig 1, with
the value of x derived by using the analytical expressions. Clearly, the two calculations
agree exceeding well verifying the original assumptions. There is a discrepancy of about
5% at w/h = 2, but the two methods become closer both for wider and thinner strips.

In Fig. 1 we also show the value of x suggested by the recession method of Wheeler
[7, 5]. Here the internal inductance is inferred from the external inductance by considering
the change in external inductance as the walls of the conductors are moved. In this way,
an expression for the attenuation constant of microstrip line was derived by Pucel et.al.
[5]. We can use the expressions of Pucel et.al., together with equation (12), to calculate
the value of x indirectly suggested by the recession method. The approach is indirect
because the expressions given by Pucel et.al. are presented in terms of the characteristic
impedance, and therefore, we must use our value of the fringing factor in order to make
the comparison. The conformal mapping, numerical integration, and the recession method
agree when the strips are wide. For thin strips the value of x is greater than unity because
of the sharp increase in current at the edges of the strip, whereas for thick strips the
value of x is less than unity because the current flows along the sides of the strip and
is more uniformly distributed. There is also good agreement for for thin, narrow strips.
In the case of thick, narrow strips, however, there is good agreement for w/h > 2 but
some discrepancy for w/h < 2. This discrepancy can be understood by recalling that in
Wheeler’s approach the influence of the strip thickness is treated as a perturbation on the
strip width.
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4 The spectral domain analysis

In the case where dispersion due to the width of the strip and the presence of the dielec-
tric interface cannot be ignored, one of the most accurate techniques for calculating line
parameters is the spectral domain method. For example, this situation will occur at mil-
limetre wavelengths when a superconducting line is fabricated on a thick substrate. The
spectral domain method is not able, however, in any formal way to calculate the behaviour
of strips having finite thickness.

The use of the spectral domain method for calculating power loss in a microstrip
line has been described elsewhere [8]. In the context of our work, the calculation of Ky
is straightforward, but one has to be more careful when calculating x. The problem
is that the spectral domain method is only formally applicable to cases where the line
is infinitely thin, but it is known that the loss in such cases is unbounded because of
singularities in the current distribution at the edges of the strip. In real calculations, the
number of basis functions used is finite, and therefore a finite value of loss is obtained.
Limiting the number of basis functions -essentially smooths the behaviour at the edges
of the strip, simulating what would be the physical reality [8]. It must be appreciated,
however, that this smoothing is a mathematical inadequacy and not something that is
central to the model. In this paper we shall employ a method proposed by Lewin [9]
which allows the integration over the strip to stop just short of the strip edges. The small
distance from the edge is calculated by equating, through a conformal transformation,
the loss over a conductor of finite thickness and width w to the loss of an infinitely
thin strip having an effective width w;. Lewin calculated the losses by considering the
strips in isolation from the ground planes, that is to say he assumed that the current
distributions on the top and bottom surfaces of the strip are equal. This yielded the result
Aw = w— w; = t/(4mrexpr) = t/290. We, however, employed the equations described
in the previous section to obtain an expression for the actual microstrip and obtained a
geometry-dependent-correction given by

52

Aw=h—r——
it l6wexpm (24)

where § = p—1 and a small ¢/h ratio was assumed for the sake of simplicity. For ¢/h < 0.01
it is easy to show that § = (8t/h)'/2 and therefore Aw = ALewin/2.

We are now ready to determine x by using the technique described by Jansen [10] for
calculating loss. We can write

X =0.5[1+ K¢Fs] (25)
where Fj is given by
l-€;
Sl S (26)
(fo 19 (e)1e)
and ¢ =1 — %.

Spectral domain analysis gives, of course, the current distribution, and after the sin-
gularities have been removed we can perform the appropriate integrals to evaluate .
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In Fig. 2, we show plots of x against strip width for a microstrip line having a thin
metallization (¢/h = 0.0001) and a substrate dielectric constant of 3.8. We show curves
based on the spectral domain method and compare them with our numerical computations.
The longitudinal current density over the strip was chosen as

Tunlz) = S_Z:anp(i_l)(o (27)

where P,(£) are the Legendre polynomials of order n, and four basis functions were used.
With a small number of basis functions precise agreement with the conformal mapping
technique is obtained provided that very thin films and low frequencies are considered.

An important advantage of the above choice of basis functions is that the loss calcula-
tion yields finite results for any finite value of n. It is only when n — oo that the modelled
current density becomes singular at the edges. For this reason, the correction given in (24)
becomes important only when a large number of basis functions are employed. Another
popular choice of basis functions in the spectral domain method is a class of functions that
satisfies the edge condition. This choice is made to simulate the behavior of electromag-
netic fields near sharp edges in an attempt to speed up the computational efficiency. An
example is the distribution

cos[2m(i — 1)¢]
Im(2) = . 28
(=) ; N (28)
To carry out loss calculation employing the above current distribution, the correction given
by (24) becomes necessary.

The ability of the spectral domain method to handle dispersion is illustrated in Fig. 2
where we show the behaviour when A,/h = 12. Although the corresponding frequency is
not particularly high, dispersion in x can readily be seen. For narrow strips, dispersion in
X is caused primarily by dispersion in Ky whereas for wide strips it is caused by dispersion
in both Ky and F,.

The ability of the spectral domain method to predict loss has been investigated ex-
perimentally [8]. Generally, it seems that it should be possible to use the spectral domain
method to calculate the behaviour of highly-dispersive superconducting circuits having
multiple coupled strips and multiple dielectrics.

5 Superconducting microstrip

Having established the integrity of the equations based on conformal transformations, we
can now apply the technique to superconducting lines. For a strip that has a thickness
that is several times the penetration depth A and that is at a temperature well below the
critical temperature and that is operating at a frequency well below the gap, the surface
impedance is given by

Zy = jwpioA = JkoNo . (29)

We can substitute this expression into the equations for the propagation constant to find

B = Ball+ 2 (30)
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In Fig. 3, we show the superconducting effective dielectric constant of a typical su-
perconducting Nb line as a function of line width. More specifically, we show the effect
of choosing x = 1, and x # 1, and compare the results with the behaviour of a non-
superconducting line. In the case of the superconducting line, it can be seen how the
nonuniform the current distribution x # 1 modifies the slow-wave effect.

To calculate the loss in a line operating at temperatures close to the critical tempera-
ture or frequencies close to the gap, it is necessary to use BCS [11] theory when calculating
the surface impedance. The surface impedance is complex and is given by [1]

. 1/2
Z, = <]—‘i’a“—°) coth [(jwpo0)/?t] . (31)

Finally, in Figs. 4 we show the loss of a typical Nb line operating at frequencies in the
submillimetre-wave range with x = 0.88. In Fig. 4, we compare the loss of the line at 5K
and the loss of the line at 2K. It is clear that at 5K and for frequencies above 500GHz, the
loss in the line is not negligible. For example, the loss in the line at 500GHz is 0.5db/mm
and approaches 1dB/mm at 700GHz. If, however, we cool to the line to 2K, the loss is
reduced by a factor of 250.
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Figure 1: The penetration factor is shown as a
function of the normalized strip width for two
normalized strip thicknesses: {/h = 1.0 and 0.001.
The full lines were calculated using the analytical
expressions of the conformal mapping technique, the
broken lines were calculated using numerical integra-
tion and the chain lines were calculated using the
recession method.
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Figure 2: The penetration factor is shown as a
function of the normalized strip width for

t/h = 0.0001. The broken line was calculated us-
ing numerical integration of the expression derived
through the conformal mapping technique. The dots
show points based on the spectral domain method
when the wavelength of operation A, is large. The
crosses show the dispersive case when A\, /h = 12.
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Figure 3: The overall effective dielectric constant, €y,
of a typical Nb sub-millimeter-wave superconducting
microstrip transmission line. We have taken

h = 300 nm, ¢t = 300nme = 3.8 and A = 0.1 nm.
The lower full line shows the case when the line is
not superconducting. The upper full line shows the
case when the line is superconducting and the fring-
ing and penetration factors are taken into account.
The broken line shows the case when the penetration
factor is set equal to unity, x = 1. These curves were
based on the analytical expressions of the conformal
mapping technique.
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Figure 4: The loss in a typical Nb superconducting
microstrip line as a function of frequency . We have
taken w = 750nm, ¢t = 300nm, A = 0.1 nm and € =
3.8. The modal effective dielectric constant becomes
€fm = 2.6. The full upper line is for a temperature of
5 K and the lower line is for a temperature of 2 K. The
plots were calculated using the analytical expressions
of the conformal mapping technique.



