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Abstract: We consider the modal analysis of partially-coherent submillimetre-wave quasioptical
systems. According to our scheme the cross-spectral density is expanded as a sum of partially-
coherent propagating free-space modes. The coherence matrix, the elements of which are deter-
mined by evaluating bimodal overlap integrals, completely describes the state of the field at a plane
and can be traced through the optical system to another plane by means of a scattering matrix.
Whereas diagonalising the scattering matrix gives the natural modes of the optical system, diago-
nalising the coherence matrix gives the natural modes of the field. As a special case, we consider
the case where the field at the source plane is completely incoherent. After developing a number
of analytical tools, we demonstrate the technique by analysing the behaviour of a Gaussian-beam
telescope. Throughout the paper we emphasise the physical significance of the equations derived.

1 Introduction

We consider the Gaussian-mode analysis of partially-coherent submillimetre-wave quasioptical sys-
tems. Our primary aim is to show that the modal techniques that have been developed for the
analysis of coherent optics [1, 2, 3] can be extended to cover the case when the field propagating
through the system is partially coherent. Partial coherence arises in some form in all problems of
practical importance. For example, consider the case where a submillimetre-wave telescope is used
to observe an extended radio astronomical source. Usually, for heterodyne receivers, one would
calculate the coupling between the detector and the source by propagating the fully-coherent field
of the horn ‘backwards’ through the optical system onto the sky [4, 5]. There is no reason why,
however, the analysis should not proceed in the opposite direction; that is to say it should be pos-
sible, at least in principle, to propagate the fully-incoherent field of the source ‘forward’ through
the optical system onto the focal plane. In the first case, the field passing through the system is
single moded even though the optical system itself is multimoded; whereas, in the second case, the
field is multimoded. Clearly, one has to distinguish between the modal properties of the field and
the modal properties of the optical system through which the field is passing.

In this paper, we describe a procedure that allows the second-order statistical properties of a
field to be traced through a complex system of long-wavelength optical components. The partially-
coherent field is constructed from coherent, diffracting free-space modes. A key feature of the
scheme is that the description of the field is complete—in addition to the description of the optical
system being complete—and therefore problems of almost any complexity can be solved. For
example, we are currently investigating the behaviour multi-mode bolometer imaging arrays, where
the state of the overall field is described by a single coherence matrix. Even in the case of a single-
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mode detector, the unused, orthogonal modes will be excited by noise, and this noise appears in
the analysis in a natural and elegant manner. Not only does the technique allow the throughput of
complex systems to be determined, but it also provides a considerable amount of physical insight
into the way partially-coherent submillimetre-wave optical systems behave. Looking to the fature,
it should be possible to study the injection of noise by lossey scattering components and the effects
of a fluctuating medium such as the atmosphere. At a deeper level, modal analysis provides an
understanding of the thermodynamic entropy of a beam in a such a way that maximum entropy
techniques could be used to examine, in some detail, the state of a collimated field from intensity
measurements alone.

In the first part of the paper, we review the integral-equation description of the propagation of a
partially-coherent field. This form provides the starting point for an analysis in terms of free-space
modes. We then describe the way in which the second-order statistical properties of a free-space
beam can be decomposed into a sum of partially-coherent modes which propagate easily and which
can be scattered at optical components. The form of the partially-coherent field at a plane is fully
characterised by a coherence matrix. We show that the coherence matrix can be diagonalised to
render the natural modes of the field. These modes are individually fully coherent but have no
well-defined phase relationship between each other. In this sense they propagate in an independent
manner.

‘We explain how the elements of the coherence matrix can be determined through bimodal over-
lap integrals, and we show how the mode set should be chosen so that the field can be represented
with near-optimum numerical efficiency. We describe how the coherence matrix can be propa-
gated in both the forward and backward directions. We then consider the special case when the
illuminating field is fully incoherent. This situation occurs, for example, when the beam from a
radio telescope and all of its sidelobes are coupled into an extended isothermal source. In this case
coherence builds up as the field propagates and the natural modes of the field at the output plane
are the same as the natural modes of the optical system.

To illustrate the technique we consider in some detail the one-dimensional Gaussian beam
telescope. This particular example allows us to demonstrate clearly the basic physical concepts.
‘We assume scalar fields, but this is not an intrinsic limitation of the scheme. The Gaussian beam
telescope is analysed in terms of Gaussian-Hermite modes and recursion relationships are used to
calculate the scattering matrices of the individual apertures. The behaviour of the whole system
is then characterised by a single low-order scattering matrix which is simply the product of the
scattering matrices of the individual components. When considering a more complicated system
all that needs to be done is to replace the scattering matrix of the Gaussian-beam telescope with
that of the actual system under consideration. To complete the paper, we present various useful
analytical tools, and demonstrate the overall method by analysing the behaviour of a Gaussian-
beam telescope when a partially-coherent field is applied.

2 Classical analysis

We assume that the submillimetre-wave system to be analysed comprises a sequence of components
that interact with and scatter a propagating free-space beam [6, 7]. From a classical point of view,
assuming for a moment full coherence, the optical system maps the field at the input plane onto the
field at the output plane in a linear manner: E, (r;) — E, (r2). Here, r; and r, represent position
vectors on the input and output surfaces respectively, and a subscript on a quantity denotes the
plane over which the quantity is being considered. Because the mapping is linear, we can express
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the output field in the form
E, (l'z) = /..S Ey (1'1)K(!‘2|1'1)¢151 ) (1)
1

where the integral is evaluated over the input surface S;. Although, it is tempting to assume that
the input surface is flat and perpendicular to the beam, this does not have to be the case, and any
surface which contains the beam can be used if the appropriate kernel K (rz|ry) is known. It is
important to appreciate that the kernel is a function of both the input and output coordinates, and
therefore the system does not have to be isoplanatic. As a consequence the formalism is applicable
in cases where significant aberrations are present. This feature contrasts with Fourier Optics where
the kernel has to be space invariant [8].

When cast in its modal form, the above equation can be used to analyse in detail the behaviour
of fully-coherent submillimetre-wave optical systems [2]. In many cases, however, the source is not
coherent and another level of sophistication is required. If we define the cross-spectral density of
an ensemble of random fields to be

Wy (r3,12) = (B2 (r2) E; (r3)) , (2)

where () denotes the ensemble average, and quasimonochromatic fields are assumed, then through
(1) it is trivial to show that the cross-spectral density propagates according to

W, (rh,75) = /S Wi (2}, 11) K (ralrs) K* (ch]ry) dS1dS] | (3)
1

where r; and rj represent two different points on the input surface. Hence, we can calculate the
cross-spectral density on the output surface if we know the cross-spectral density on the input
surface. Again it is emphasised that the optical system does not have to be isoplanatic.

A special case arises when the field on the input surface is everywhere fully incoherent. This
situation will only occur at the position of a source as any propagation or scattering will induce
some degree of coherence, as will be shown later. In the case when the input is fully incoherent we
can write

Wi (xy,r1) = I(r1)68 (r1—13) (4)

where I (x;) is the intensity of the source. Substituting in the expression for the propagation of
the cross-spectral density, (3), we get

Wa(e,m) = [ B 00) K (rals?) K (e3ivs) S5 - (®)

In general, an incoherent source will lead to coherence in the output plane.

Finally, if we are only interested in the intensity of the field at the output plane,
I(rz) = W2 (rz,12) =/s I (v}) K (x2lr)|* dS] . (6)
1

We can see that for an incoherent source, and for the case where one is only interested in intensity,
the output is linear in intensity and the kernel is the square modulus of the kernel associated with
the fully-coherent case [9]. This equation describes, of course, the way in which a telescope images
the brightness distribution of an astronomical source onto its focal plane.

The imaging properties of optical systems are usually understood in terms of Fourier expansions
of the above equations. Unfortunately, Fourier Optics can only be used in the case of ideal,
isoplanatic systems, and moreover the equations derived only relate fields at conjugate Fourier
planes. What we would like is a simple scheme based on multimode Gaussian optics that allows
the statistical properties of a field to be calculated at any intermediate plane.
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3 Gaussian-mode expansion of the cross-spectral density

For partially-coherent systems, the quantity we wish to decompose into modes is the cross-spectral
density: where, formally, we understand the cross-spectral density to be the time Fourier transform
of the mutual coherence function. We can achieve this end by assuming that the optical system
under consideration is one member of an ensemble. If the bandwidth is sufficiently narrow so that
the coherence length is very much greater than the physical size of the system, the phase at one
point in one member of the ensemble is well defined with respect to the phase at another point
in the same member of the ensemble. As in the coherent case, the field can then be written as a
modal sum [10]:

Ei(r,w)= Z A (0) Y (T,w) (M

where we tacitly understand that if the system is two dimensional, the index labelling the mode
represents two indices. In this equation, ¢ denotes a particular member of the ensemble, and the
frequency dependence of the mode coefficients has been indicated explicitly by w. Obviously, we
can now represent the cross-spectral density at some plane in terms of this expansion:

Wi (ry,r1) = (Ei(r1)Ej (r})) 8)
= 33 Conmtb (7)) ¥ (1)
where
O = (A4 - ©)

The above equation is simply the bimodal expansion of the cross-spectral density. From a physical
point of view, the non-negative-definite Hermitian form ensures that a positive intensity is formed
when two parts of the field are combined in an interferometer. In the above equation we have
dropped the explicit reference to frequency, but it must be remembered that to get the full behaviour
over a range of frequencies, the appropriate integration must be carried out.

For convenience we can write the coefficients of the bimodal expansion in matrix form:
C=(A'A™T) (10)

where A is the column vector of mode coefficients corresponding to the i’th member of the ensemble,
and xT" denotes the conjugate transpose. Clearly, once we know the expansion coefficients C we have
characterised the form of the partially-coherent beam at a plane. The propagation of the coherence
matrix in the partially-coherent case is equivalent to the propagation of the mode coefficients in
the fully-coherent case.

Although physically appealing the above argument is not mathematically rigorous. The problem
lies in the fact that, in order to generate the modal expansions, we tacitly assumed that we could
Fourier transform the time-dependent field of each member of the ensemble, and yet it is well
known that it is not possible, because of lack of convergence, to Fourier transform the members
of a stationary random process. Wolf has considered the modal expansion of three-dimensional
stationary random fields in some detail [11, 12]. He showed that in order to avoid the introduction
of generalised Fourier transforms, it is possible to set up an ensemble which generates the cross-
spectral density as an ensemble average of mode coefficients of ordinary functions. The arguments
are somewhat involved, but the outcome is that modal expansions of the above kind are rigorously
correct, as physical intuition would suggest. The essential point to bear in mind is that one is
propagating a statistical property of the field rather than the field itself, and this quantity, the
cross-spectral density, propagates according to Helmholtz equations.
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We now need to know how to calculate the mode coefficients when the functional form of the
cross-spectral density is known. By a simple extension of the usual overlap integral we find that
the elements of the coherence matrix are given by

Cont = /s W (v}, 71) Your (£) ¥ (v1) dS2dS1 . (11)

In general, we do not know the cross-spectral density at every plane, but there is usually some
plane over which the cross-spectral density is known.

4 Natural modes of a partially-coherent field

At this stage we have expanded the cross-spectral density in terms of some basis mode set. We can
of course transform to some other basis set and describe the field equally well. It is a basic feature of
the Hermitian form given above, that if the cross-spectral density is to remain unchanged under this
transformation, the transformation must be unitary. That is to say there is some transformation
U, for which UU*T =1 and UCU*T is diagonal. Of particular interest is the transformation that
diagonalises the coherence matrix. In a sense, the modes found in this way are the natural modes
of the field, because then the partially-coherent field is represented by a sum of modes which are
individually fully spatially coherent but completely incoherent with respect to each other.

The problem of how to expand the cross-spectral density of a three-dimensional random field in
terms of its natural modes has been considered by Wolf {11, 12], who approached the problem not
by thinking about the system in which the field is contained but by thinking about the intrinsic
properties of the field itself. The solution is to remember Mercer’s theorem, which essentially
states that if the kernel of a homogeneous Fredholm equation of the second kind is Hermitian
and nonnegative definite then the eigenvalue spectrum is discrete, real and the eigenvectors form
a complete orthonormal set in terms of which the kernel can be expanded. When looking for a
bimodal expansion, it is therefore natural to set up an integral equation of the form

Xdi(a) = [ W (4,m) s (51) dry (12)
so that the kernel can be expressed as a weighted sum of eigenfunctions:

W (ry,r1) = Z/\i‘ﬁf (ry) éi(r1) - (13)

These eigenfunctions, ¢;, are the natural modes of the field, and A; are the associated eigenvalues.

We can now ask what is the relationship between Wolf’s natural mode set and the modes that
we have used. If we expand the natural modes as a sum of our—as yet undefined—propagating
modes, we have

$i(r1) =Y An¢a(ra) , (14)

and if we substitute this equation together with the bimodal expansion (8) into the eigenvalue
expression (12), we find that .
[C-\IJA =0, (15)

where now A' are the mode coefficients of the natural mode 3 and J; is the associated eigenvalue.
Hence, if we know the cross-spectral density at some plane, we can construct the coherence matrix by
evaluating the overlap integrals and then we can find the natural modes by finding the eigenvectors
through (15).

To understand the physical meaning of these expansions, suppose that we have an ensemble of
optical systems, where the field associated with each member of the ensemble is constructed from
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spatially-coherent modes, the phases of which are fully incoherent and uniformly distributed with
respect to each other. In this case we have

Crnrt = (| | | e} (exP [7 (B = )] ) = AmSm,m’ (16)
The coherence matrix is diagonal as one would expect. If, however, we now transform to another

arbitrary mode set, it is easy to show and physically reasonable, that the mode coefficients become
partially coherent and the coherence matrix is no longer diagonal.

In summary, we can expand the cross-spectral density in terms of any convenient mode set by
using the bimodal form of the overlap integral. Because the modes are not chosen in any particular
way, correlations will exist between the mode coefficients and the coherence matrix will be full.
Here we are expanding the cross-spectral density in terms of a set of fully spatially-coherent modes
which are partially coherent with respect to each other. If we diagonalise the coherence matrix, we
can express the cross-spectral density as a sum of modes which are completely uncorrelated with
respect to each other, and therefore have no definite phase relationship between them. These are
the natural modes of the optical field defined by Wolf.

Expanding a random process as a sum of orthogonal uncorrelated functions is known as a
Karhunen-Loéve expansion, and in general an expansion can be found even when the process is
not stationary. For example, in adaptive optics, the randomly distorted phase in the aperture of
a mirror is usually expanded in terms of Zernike polynomials. The most efficient functions to use,
however, when compensating for phase errors is the Karhunen-Loéve expansion [13] . There is a
close relationship between the technique that we are promoting and the techniques of adaptive
optics, but it must be appreciated the physical application is very different. In this paper, we are
expanding a propagating field, whereas in adaptive optics it is the phase of the field at a plane that is
being expanded. Nevertheless it would be particularly interesting to use partially-coherent Gaussian
modes to model the behaviour of a submillimetre-wave telescope when a turbulent atmosphere is
included.

5 Completely-incoherent sources

Of particular significance is the case where the field at the input plane is fully incoherent and
has uniform intensity. This situation occurs for example when the beam of a submillimetre-wave
telescope is coupled to a source of uniform brightness. For an incoherent field, we can write

W (r},r1) = I(r1)6 (r1 —1x3) - (17)
Substituting this form into the bimodal overlap integral we find
Conmt = [5 I (r1) e (1) %2 (r2) dS; - (18)
1
Now if the source has uniform brightness
Cm,m’ = Ioam,m' 3 (19)

that is to say all of the modes are excited equally and independently. It can be shown that because
of completeness this statement must be true regardless of what mode set is used. Physically, this
must be true because the resultant field cannot contain any spatial information. In matrix form,
we have for a uniform incoherent source

CcC=1I1 (20)
where I is the identity matrix. Obviously, if the brightness over the plane of the source is not
uniform, correlations must be induced between modes even though the source itself is incoherent.
This behaviour is to be expected classically because the van Cittert-Zernike theorem tells us that
correlations exist in the far field of a source of finite size even when the source itself is incoherent.
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6 Propagating the correlation matrix

It is well known that a coherent field can be traced through a submillimetre-wave optical system
by multiplying the mode coefficients of the incoming beam by a scattering matrix. Moreover, if the
optical system comprises a number of optical components then the scattering matrix associated with
the overall system is simply the product of the scattering matrices associated with the individual
components [2]. This procedure is fundamentally based on the modal expansion of equation (1).
That is to say the input and output fields, and the kernel, are expanded in terms of a convenient
set of modes prior to evaluating the integral. In the case of a partially-coherent beam, we need
to find the modal equivalent of equation (3); or in other words, we need to ask how the coherence
matrix can be traced through an optical system once the scattering matrix is known.

We know that for each member of the ensemble we can propagate the field according to the
usual Gaussian mode scattering matrix S. Hence if the field at the input plane has mode coefficients
A then the field at the output plane has mode coefficients B* where

B =SA*. (21)
The coherence matrix at the output plane therefore becomes
<B£Bi*T> =S <AiAixT> S*T ; (22)

or
D =scs*7 (23)

where D is the coherence matrix at the output plane, S is the usual coherent-mode scattering
matrix, and C is the coherence matrix at the input plane. Hence we can calculate the scattering
matrix associated with the optical system in the usual way, and then calculate the coherence matrix
at the output plane if we know the coherence matrix at the input plane. Numerically, the procedure
is very straightforward, and the scattering matrix only has to be calculated once for a given optical
system. The scattering matrix contains all of the information necessary to propagate a coherent or
incoherent field. Notice also that if the optical system under consideration is varying with time, as
would be the case for a turbulent atmosphere above a telescope, then the ensemble average should
include the time-varying scattering matrix.

It is also interesting to ask how we calculate the cross-spectral density at the input plane if we
know the cross-spectral density at the output plane. This is clearly the imaging process in the case
where we have complete knowledge about the amplitude and phase of the cross-spectral density in
the focal plane. It is straightforward to show that as along as S™! exists, the cross-spectral density
at the input plane is given by

-1 -\*T
c=s"D(s?)" . (24)
In a later paper, we will show how this leads to a general method for reconstructing images even
in the case when the imaging array is far from ideal.

7 Analysis of partially-coherent submillimetre-wave optical sys-
tems

Before demonstrating the above techniques through the analysis of a particular system, it is useful
to review the overall procedure with an emphasis on physical interpretation.

We now know that the properties of a partially-coherent field can be fully characterised by
means of a coherence matrix. The coherence matrix is simply a convenient way of organising the
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coefficients of a bimodal expansion of the cross-spectral density. The modes used in the expansion
can be any orthonormal set, but it is convenient to use a set of modes that propagate easily.
Later we will show that Gaussian-Hermite or Gaussian-Laguerre modes are almost ideal. Once the
coherence matrix is known, it can be traced forwards or backwards through the optical system by
using the ordinary coherent-mode scattering matrix. Finally, once the scattered coherence matrix
is known, the cross-spectral density can be reconstructed at the output plane.

It is also straightforward to show that if we combine two fields at a plane that are generated
incoherently then the overall coherence matrix is the sum of the two individual coherence matrices
regardless of the states of coherence of the individual fields. This particular theory has application
for example when a submillimetre-wave beam is truncated by a lossy aperture which injects noise
of its own. We will show in a later paper how to calculate the coherence matrix of a lossey, passive
component simply from knowledge of its temperature and scattering matrix. In general, therefore,
not only can we propagate a partially-coherent field but we can also add in noise generated by
lossey components. I required these noise sources can be referenced to one end of the optical
system giving a set of noise parameters which completely characterises the noise performance of
the system in much the same way as the noise properties of a microwave transistor are characterised
by a set of noise parameters which are referenced to the input. In the case of an optical system the
noise parameters take the form of a matrix of complex temperatures.

It is vitally important to appreciate that the coherence matrix characterises the modal properties
of the field at a plane whereas the scattering matrix completely characterises the modal properties
of the optical system. The two are, of course, distinct. In general, because an arbitrary mode set
has been chosen to expand the cross-spectral density, the coherence matrix will be full showing
that correlations exist between the modes. We can, however, diagonalise the coherence matrix to
give the mode coefficients of the natural modes of the field, that is to say the modes that propagate
independently with full spatial coherence but no definite phase relationship between them. The
eigenvalues give the amount of power in each mode. In general, even though we do not diagonalise
the coherence matrix we should choose a convenient mode set that makes the coherence matrix as
near diagonal as possible. In this way the modes chosen will be as close as possible to the true
natural modes of the field.

In a previous paper [2], we discussed the diagonalisation of the scattering matrix. In this case the
eigenvectors give the mode coefficients of field distributions which pass through the optical system
unchanged, and the eigenvalues give the loss associated with the propagation of these fields. These
modes are the normal modes of the optical system, and in general any incoming field distribution
can be expanded in terms of these modes and propagated through the system simply by multiplying
by the eigenvalues. For convenience we choose a mode set that propagates easily and yet which
diagonalises as near as possible the scattering matrix. In general the natural modes of the optical
system are not the same as the natural modes of the field, and we can ask whether it is more
reasonable to choose a mode set that near diagonalises the coherence matrix or a mode set that
near diagonalises the scattering matrix.

It is now particularly revealing to ask what happens in the case where an optical system de-
scribed by a scattering matrix S is illuminated by a uniform fully-incoherent source. We know that
for any mode set the coherence matrix of a fully-incoherent source is diagonal, and therefore the
field at the output plane of the optical system is described by

D = I,S1s*T . (25)

It is clear that although the field at the input plane is fully incoherent, the field at the output
plane has coherence induced on it due to mode filtering. The induction of coherence is evidenced
by the appearance of off-diagonal terms in the output coherence matrix. We know, however, that
there is some mode set that diagonalises the scattering matrix—the natural modes of the optical
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system—and clearly in this case the coherence matrix at the output plane must also be diagonal.
Hence, if the optical system is illuminated by an incoherent field, the natural modes of the field at
some plane in the optical system are the same as the natural modes of the optical system itself.
This statement seems physically reasonable because all of the coherence induced in the originally
incoherent field is due to the optical system.

It is also interesting to note at this stage that spatial coherence will generally build up as modes
are filtered. We know that when a low-throughput optical system is illuminated by a coherent
source, the output of the system will tend to the lowest-order eigenmode regardless of the precise
nature of the incoming field, and this is why submillimetre-wave optical systems always, somewhat
conveniently, tend to produce Gaussian beams. In the case of incoherent illumination the situation
is somewhat similar, but now as more and more low-throughput components are added, the output
field will tend to become more and more coherent. We will demonstrate this effect in the next
section.

In summary, it is important to distinguish between the natural modes of the optical system and
the natural modes of the field. The natural modes of the optical system are found by diagonalising
the scattering matrix whereas as the natural modes of the field are found by diagonalising the
coherence matrix. In the case where the incoming field is incoherent the two are, as shown above,
identical. If the incoming field is partially coherent, however, the natural modes of the field after
passing through the optical system will not be the same as those of the optical system, and the
similarities will depend on the degree to which the optical system imposes coherence on the field.

A further important and useful consideration is that the number of significant non-zero eigen-
values found when diagonalising the scattering matrix gives the number of degrees of freedom of
the optical system. The number of non-zero eigenvalues found when diagonalising the coherence
matrix gives the number of degrees of freedom of the field. Clearly, the number of degrees of
freedom of the field can only be as many as the optical system and the two will be the same
when the incident field is fully incoherent. In the case where the incoming field is fully coherent,
the coherence matrix at any plane will have only one non-zero eigenvalue, a feature which can be
traced to the fact that the elements of the coherence matrix factorise. In general, this will mean
that because the coherence matrix has N? elements it will not be possible to diagonalise. The
solution to this apparent paradox is that the modes of the optical system will all, at some level,
be excited by noise. In fact it can easily be seen that we can add a noise coherence matrix to a
fully-coherent coherence matrix we get a matrix that can be diagonalised, and if the signal to noise
ratio is high, one eigenvalue will be much greater than all of the others. The ability to study the
signal and noise properties of a field through diagonalisation is a particularly powerful technique.
For example, the field ‘produced’ by a complete array of detectors [14] can be described by a single
coherence matrix, the eigenvalues of which give the relative sensitivities of the pixels. Another
example is the thermal radiation emitted by an overmoded horn when a perfect absorber is placed
in the overmoded waveguide. Moreover, the diagonalisation of the coherence matrix could be used
to diagnose problems in experimentally-derived data. In particular it should be possible to extract
the coherent field of interest from background noise. Before leaving the subject of modes, it is
also worth pointing out that the coherence matrix just described is the optical analogue of the
quantum mechanical density matrix, where a coherent field corresponds to a pure quantum state
and a partially-coherent field corresponds to a mixed quantum state.

In addition to diagonalising the coherence matrix for the purpose of investigating the nature
of a field, we can also use various other analytical tools. First it should be noticed that the total
amount of power in the beam is given by the trace of the coherence matrix:

P= ZC,—,,- =Tr(C). (26)

Now the trace of a matrix is invariant to unitary transformations such as diagonalisation, and
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Figure 1: A Gaussian-beam telescope.

therefore, the total amount of power is also given by the sum of the eigenvalues ( the eigenvalues
are real because the coherence matrix is Hermitian). Physically, this is to be expected because
the diagonalised coherence matrix is representing the cross-spectral density as a sum of completely
incoherent modes. Moreover, although we will not discuss it in this paper it is likely that the
eigenvalues can be used as a measure of the degree of disorder of the whole field, and therefore
it should be possible to use maximum entropy techniques to recover mode coefficients from noisy
partially-coherent experimental data 15, 16].

Once the coherence matrix is known, we can reconstruct the intensity and degree of coherence
of the field. As stated earlier the cross-spectral density is given by

W (') = 3 Conrthimr (x1) ¥ (T1) (27)

m m!
and therefore the intensity and degree of coherence can be written

I(r)=W(r,r) (28)

W (r',r)
VI{T)I(r)

respectively. The one-dimensional forms of these expressions will be used in the next section.

r'(',r)= (29)

8 Partial coherence and the Gaussian-beam telescope

In the preceding sections we outlined a method by which the behaviour of multimode partially-
coherent submillimetre-wave quasioptical systems can be analysed. Although the technique can be
used to analyse the behaviour of almost any system—through the use of the appropriate scattering
matrix—in this section we shall apply the theory to the Gaussian-beam telescope [1]. Not only
does the Gaussian-beam telescope exhibit features which are integral to all systems, but it also
produces results which are easily interpreted in terms of classical analysis [17, 18]. In order not to
cloud the central features of the model, we shall work in one dimension, but the extension to two
dimensions is straightforward.

A diagram of a Gaussian-beam telescope is shown in Fig. 1. This arrangement is important
because the field at the input plane is imaged onto the field at the output plane in a frequency-
independent way. An important feature of the arrangement is that there are two apertures, one at
the input plane and one at the conjugate Fourier plane. In the context of a telescope, one can be
regarded as the aperture stop and one as the field stop. Although for convenience we have located
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the apertures at particular planes, the technique can easily handle other arrangements. The reason
for including apertures in the model is that they limit the throughput of this ideal imaging system
as would be the case for any real system with finite-size components.

To begin, we must calculate the scattering matrix of the system. Let us for the moment
assume that the fields in the regions between the components are described as sums of propagating
Gaussian-Hermite modes. Each mode has the form

1/2 _
Yo (2) = (-*;—5) - (‘—fj—) exp [£76]exp [;J;’; ] exp (k] (30)
where [ 2]
Hy(u)exp |-%
and
6=(m+1/2) =, (32)

also H,, (u) is the Hermite polynomial of order m in . It is important to realise that the functions
h, (u) are orthonormal in the sense that

/_ “: b () o (1) dtt = G - (33)

In these equations the symbols have their usual meanings. In particular, w characterises the scale
size of the beam at a plane, R characterises the large-scale radius of curvature of the phase front,
and 6, the phase slippage between modes, characterises the form of the field as the beam propagates
and diffracts. As has already been described in some detail [2], a mode set is not completely defined
until the size w, and position of the waist are stated. Let us defer for a moment a discussion about
how the waist size w, should be chosen. We do know, however, that at for a Gaussian-beam
telescope the large-scale phase front of the field at the focal planes is flat, and therefore we can
place the waists at these positions.

Having decided on the mode sets, we know that the scattering matrix of the whole system is
just the product of the scattering matrices of the individual components. The components in this
case are the two apertures and the free space paths between them; as usual the focusing effects of
the ideal lenses are taken up by choosing the mode sets appropriately; that is to say the waists at
all but the input plane are chosen according to the usual single-mode Gaussian-beam analysis. If
we adopt this scheme there is no modal scattering associated with the ideal lenses.

The size of the waist at the input plane is still undetermined, and although any waist would
produce a complete mode set in terms of which the field throughout the system could be represented,
some particular input waist will be numerically more efficient than others. In a previous paper [2],
we discussed at some length that the waist should be chosen to diagonalise as near as possible the
scattering matrix, because in this case the Gauss-Hermite mode set chosen is a close as possible to
the true eigenmodes of the system. In fact in that paper, we diagonalised the matrix to recover the
true eigenmodes and eigenvalues which are known from classical analysis to be prolate spheroidal
wavefunctions. Rather than choosing the mode set that best describes the natural modes of the
optical system, we could choose the mode set that best represents the natural modes of the field.
We know, however, that in the case of a perfectly incoherent source the two converge. In fact the
way of choosing the waist described previously is based on the concept of incoherent modes, in
the sense that we assumed that the intensity of the beam at a cross section is simply given by the
incoherent sum of the individual mode intensities. It seems completely reasonable that the mode
set for analysing the behaviour of a partially coherent field is precisely the same as that required for
analysing a completely coherent field. We, therefore, assume that the mode set is also appropriate
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for any partially-coherent field. We are of, course, merely talking about efficiency of convergence
and so the precise choice is not critical anyway.

Hence, as before, we take the input waist of the optimum mode set to be

wy = [Afal]llz (34)

Taz

where a; and a, are the radii of the apertures, and f is the focal length of the lenses. Moreover,
the number of modes that should be used in the expansion is approximately the Fresnel number ¢

where
2maja;

fa

(35)

‘We are now in a position to derive the scattering matrix of the Gaussian-beam telescope. First
we must calculate the scattering matrices of the apertures. By evaluating the field overlap integral
over the output plane of each aperture [19, 20], and taking advantage of the fact that the large-scale
phase front is flat at that point, we find that the scattering matrices are given by

P +v/2ke
o = /_ B (1) B (1) (36)

where k; = a/w is the normalised truncation. Because the mode set is, by definition, chosen so
that the truncation at each stop is the same, we can easily write

+E
Smm = f_ e P () B () (37)

Hence once we have chosen the Fresnel number, the scattering matrices of the two apertures are
the same and given by the expression above. We could, of course, evaluate this matrix numerically,
but we have found the following recurrence relationships nuseful. First we calculate the lowest-order
coefficient through

Soo =erf (\/Z) (38)
where erf(u) is the error function. Then, for all n + 1 odd we have
So,(n+1) = S(n+1)0=0, (39)

and for all n + 1 even we have

2 1/2
SO,(n+1) = 5(n+1),o == (n T 1) ko (\/E) hn (\/E) . (40)
Also, for (m+ 1)+ (n+ 1) odd
S(m+1),(n+1) = S(n+1),(m+1) =0, (41)
and for (m+ 1)+ (n+1) even
m+1\/? 2 \?
(25) Smn=(27) " s WO B (V) - (82)

These equations show that power does not scatter between odd and even ordered modes, as would
be expected.

We also need the scattering matrices of the free-space paths. These are easily found because
we know that the relationship between the focal planes of a Gaussian-beam telescope is a Fourier
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Point—spread function

Off —axis distance

Figure 2: The point-spread functions of Gaussian-beam telescopes having Fresnel numbers of 4,8,
and 16. The off-axis distance is normalised to the waist: z/w. Forty eight modes were used to
construct these plots.

‘transform or equivalently that the phase slippage is m/2 [2]. The scattering parameters of the
free-space paths therefore become

S = [cos (%) +jsin (7r_2n1>] b - (43)

If we denote the scattering matrices of the free space paths by Sy and the scattering matrices of
the apertures by S, then the scattering matrix of the whole Gaussian beam telescope is simply
given by the product

S = $45,5/S, . (44)

This matrix is extremely simple to generate using the above equations, and it is remarkable that
it completely characterises the coherent and partially-coherent behaviour of the system. Also by
raising the overall scattering matrix to some power we can calculate the effect of having a sequence
of Gaussian-beam telescopes. This technique will be demonstrated shortly.

Now that we have generated the scattering matrix of a one-dimensional Gaussian-beam tele-
scope, we can investigate its response to various different kinds of excitation. Before studying the
propagation of partially-coherent radiation, it is worth while verifying the integrity of the scattering
matrix by investigating the coherent behaviour. First of all we would like to plot the point-spread
function.

The point-spread function is, of course, the output of the system when there is a delta function
in the input plane. Moreover, for the Gaussian beam telescope, the input plane is at the position
of a waist, where the phase front is flat. Calculating the mode coefficients in the one-dimensional
case by evaluating the overlap integral, and then substituting the mode coefficients into the modal

458



Eighth International Symposium on Space Terahertz Technology, Harvard University, March 1997
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Strehl ratio

-0.5

Off —axis distance

Figure 3: The Strehl ratio as a function of normalised, z/w, off-axis distance of Gaussian-beam
telescopes having Fresnel numbers of 4,8 and 16. Forty eight modes were used to construct these
plots.

expansion of the field, we find that the point-spread function, at the output plane, is given by

Epf (z,2') = (?) ZZSm,nhn (ﬁ21> hm (@> (45)

w w

where Sy, , are the elements of the scattering matrix and z’ is the position of the delta function
in the input plane. In Fig. 2, we show the point-spread functions of a number of Gaussian-beam
telescopes. This example demonstrates rather clearly how easy it is to calculate the point-spread
function once the scattering matrix is known.

Rather than plotting the point-spread function for different input positions, it would be con-
venient to have some simple measure of its form. Classically, the crudest method use to use the
Strehl ratio, where the Strehl ratio is defined as the height of the central peak normalised to the
height of the peak at the central position. The argument being that because of the conservation of
energy, any aberrations which spread the point-spread function will also reduce its height. In the
case of Gaussian modes it is particularly easy to calculate the Strehl ratio. In fact it is given by

o _ ZmZaSmnhn (¥22) by, (=2Z) ()
T ZalaSmahn ()R (0)
Notice that the sign on one of the Hermite functions has changed to take into account the fact
that, in our system, the peak in the point-spread function moves in the opposite direction to the
position of the delta function. In Fig. 3 we show the Strehl ratio as a function of position for a
number of different Fresnel numbers.

The Strehl ratio is independent of position over the whole of the field of view and this observation
simply reflects the fact that we did not include any aberrations in our system. Some ringing can
be seen at the edge of the input aperture, and this is a Gibbs phenomena due to the fact that we
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are trying to describe the sharp edge of the input aperture with a finite number of modes. This
ringing is not an optical effect, but exists merely because we are trying to represent the abrupt
disappearance of the input field behind the input aperture. Moreover, it is only a second-order
effect in the sense that it only represents a low-level ringing in the point-spread function. In fact
Fourier theory gives us a limit to the percentage error in the height of the point-spread function
as we move close to the edge of the field of view. The most impressive aspect of these plots is that
they demonstrate that a small number of modes can represent the behaviour of the system over
a large field of view, and this has significant implications for modelling the behaviour of imaging
arrays.

Notice that in all of these plots, we used the expression

SHON &

in order to generate normalised scales.

We would now like to investigate the behaviour when a fully-incoherent source with a Gaussian
intensity distribution is applied to the input. To perform this calculation, we require the coherence
matrix. Using the one-dimensional form of the bimodal overlap integral and a cross-spectral density

of the form )
W(z',z) =I(z)é(z—2') = Kexp [—Eﬁz—;;ﬂ]ﬁ(z—z') (48)
we find + 2
Comm = K? (?) /_ exp [_2(2 ;zo) ] b (‘/fz) hom (—*/—;23) dz . (49)

In Fig. 4, we show the intensity of the field at the output plane of a Gaussian-beam telescope when
the Fresnel number is 4, 8, and 16. The normalised width of the effective input field distribution,
o/w, was taken to be 0.707. Superimposed on each plot is the cross-spectral density when the
normalised reference position is 0.35: we could, trivially, have chosen any other reference position
and the result would have been essentially the same.

For the purpose of generating a highly-incoherent input field distribution, we used 60 modes,
but this large number of modes is not actually needed for the analysis. The main feature is, as
would be expected, a slight spreading of the output intensity with decreasing Fresnel number and
an increasing degree of coherence. What is not seen, because of normalisation, is the large amount
of power lost, which would not be the case for a coherent field.

In addition to these plots it is also convenient to look at the behaviour when the input is a flat
incoherent field of finite extent. In this case the elements of the coherence matrix are given by

Crn = (-?) [ h (@) - (—‘?) s , (50)

-b w

where b is the extent of the field. Clearly, in the case where b — oo, the coherence matrix becomes
diagonal, as expected. In Fig. 5 we show the intensity and cross-spectral density at the output
plane when the Fresnel number is 4, 8 and 16.

Again the main feature of the plots is the smoothing of the highly-truncated input field and the
increase in spatial coherence with decreasing Fresnel number. The cross-spectral densities should
be compared with the point-spread functions shown in Fig. 2.

Finally, in Fig. 6 we show a sequence of plots where in each case the top-hat field distribution
described above has been applied to a combination of Gaussian-beam telescopes all having a Fresnel
number of 4. By simply raising the scattering matrix to the appropriate power, we show the effect of
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Figure 4: In (a) we show the Gaussian intensity and cross-spectral density of the field at the
input plane of a Gaussian-beam telescope. Sixty modes were used, for the purposes of the plot,
to synthesize a nearly fully-incoherent field. The Gaussian input field has an effective normalised
width of 0.707. In (b),(c) and (d) we show the intensity and cross-spectral density at the output
plane when the Fresnel number is 4,8, and 16.
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Figure 5: In (a) we show the top-hat intensity and cross-spectral density at the input plane of
a Gaussian-beam telescope. Sixty modes were used, for the purposes of the plot, to synthesize a
nearly fully-incoherent field. The top-hat input field has an normalised half width of 1.414. In
(b),(c) and (d) we show the intensity and cross-spectral density of the field at the output plane
when the Fresnel number is 4,8, and 16.
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Figure 6: The intensity and cross-spectral density of the field at the output plane of a Gaussian-
beam telescope when the Fresnel number is 4 and a fully-incoherent field with a top-hat intensity
distribution is applied. (a),(b),(c) and (d) show the outputs when 1,2,4 and 8 identical telescopes
are combined in series.

having 2 telescopes, 4 telescope, and 8 telescopes in series. Clearly, this corresponds to adding more
and more identical lens systems. It can be seen how coherence builds up due to mode filtering,
and after 8 passes a fully-coherent Gaussian field is produced despite having started with fully-
incoherent top-hat field. Indeed this is precisely the way in which coherence builds up in a laser
cavity [21, 22, 23].

In order to demonstrate the behaviour of the system, we have used fully-coherent and fully-
incoherent input fields. It is usual practice in classical optics to work in terms of Gauss-Schell
sources [24, 25, 26], where both the intensity and the degree of coherence are Gaussian functions. It
is then possible to change the degree of global coherence by varying the relative scale sizes. It would
be straightforward to apply such a field to our system in order to investigate general behaviour,
but it would not be particularly useful for practical applications. The examples we have studied
here, are of course the two limiting extremes of this more general model. Despite these comments,
it is interesting to note, that the natural modes of the Gauss-Schell source are Gauss-Hermite
functions and the eigenvalues also have a particular form. It would be interesting to investigate the
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implications of the scale sizes when such a beam is propagated through a Gaussian-beam telescope.
In particular it should be possible to determine what size Gaussian intensity distribution would
pass through a system with the minimum amount of loss. Moreover, such an analysis is closely
related to the ability to use different approximations when calculating the scattering matrices of
apertures. This issue has been discussed in some detail in the context of coherent fields [2], and it
would be useful to extend the analysis to incoherent fields.

9 Conclusions

In this paper we have described in some detail a technique for calculating the behaviour of partially-
coherent submillimetre-wave quasioptical systems. The technique, like its coherent equivalent, is
based on the ability to scatter propagating modes at optical components. The field, instead of
being described by a vector is described by a matrix, and this allows much more detail about a
field to be traced through a system. In this way it is possible to distinguish between the natural
modes of the field and the natural modes of the optical system through which the field is passing.

In the paper, we explained how to calculate the components of the coherence matrix from
the known functional form of the cross-spectral density, and also how to propagate the coherence
matrix in the forward and backward directions. We also gathered together a collection of tools for
analysing performance when the scattering matrix is known. We illustrated the overall method by
investigating the behaviour of one-dimensional Gaussian-beam telescopes. In a later paper we will
use the same techniques to analyse in some detail the behaviour of arrays of multimode bolometers.

Not only is the method very powerful in a computational sense, but it also leads to considerable
insight into the way multimoded partially-coherent quasioptical systems behave. We believe that
the method can be extended to allow the noise performance of multibeam bolometer arrays to be
calculated, to allow the experimental analysis of beams through maximum entropy techniques, and
to allow the statistical properties of systems to be taken into account—for example to model the
behaviour of a submillimetre-wave radio telescope with the atmosphere included.

References

[1] P.F. Goldsmith, “Quasioptical techniques at millimetre and submillimetre wavelengths,” in
Infrared and Millimeter Waves, vol. 6, K.J. Button, Ed. New York: Academic, Ch. 5, 1982.

[2] S. Withington and J.A. Murphy, “Multimode Gaussian optics,” 3rd Int. Workshop on Tera-
hertz Electronics, Zermatt, Aug. 1995.

Submitted to Infrared Physics and Technology.

[3] D.H. Martin and J.W. Bowen, “LOng-wave optics,” IEEE Trans. Microwave Theory Tech.,
vol. 41, pp. 1678-1690, 1993.

[4] R. Padman, J.A. Murphy, and R.E Hills, “Gaussian mode analysis of Cassegrain antenna
efficiency,” IEEE Trans. Antennas Propagat., vol. 35, pp. 1093-1103, 1987.

[5] J.A. Murphy, “Aperture efficiencies of large axisymmetric reflector antennas fed by comical
horns,”IEEE Trans. Antennas Propagat., vol. 36, pp.570-575, 1988.

[6] R. Blundell and C.-Y.E. Tong, “Submillimetre Receivers for Radio Astronomy,” Proc. IEEE,
vol. 80, pp. 1702-1720, 1992.

[7] P.F. Goldsmith, “Quasi-optical techniques,” Proc. IEEE, vol. 80, pp.1729-1747, 1992.

464



Eighth International Symposium on Space Terahertz Technology, Harvard University, March 1997

[8] J.W. Goodman, “Introduction to Fourier Optics,” New York: McGraw-Hill, 1968.
[9] M. Born and E. Wolf, “Principles of Optics,” Pergamon Press:1993, section 9.5, pp.480-490.

[10] J.A. Murphy and A. Egan, “Examples of Fresnel diffraction using Gaussian modes,” European
J. Physics, vol. 14, pp. 121-127, 1993.

[11] E. Wolf, “New theory of partial coherence in the space-frequency domain. Part I: spectra and
cross spectra of steady-state sources,” J. Opt. Soc. Am., vol. 72, pp. 343-351, 1982.

[12] E. Wolf, “New theory of partial coherence in the space-frequency domain. Part II: Steady-
state fields and high-order correlations,” J. Opt. Soc. Am. A., vol. 3, pp. 76-85, 1986

[13] F. Roddier, “The problematic of adaptive optics design,” in Adaptive Optics for Astronomy,
eds. D.M. Alloin and J.-M. Mariotti, Kluwer Academic: The Netherlands, 1994, pp. 89-112.

[14] D.T. Emerson and J.M. Payne, “Multifeed systems for radio telescopes,” Astronomical Soci-
ety of the Pacific Conference Series, vol. 75, 1995.

[15] S. Withington and K.G. Isaak, “Phase retrieval at submillimetre wavelengths using Gaussian
Hermite modes,” Proc. Fourth International Symposium on Space Terahertz Technology, Los
Angeles, April, 1993.

[16] A. Cutolo, A. Esposito, T. Isernia, R. Pierri, and L. Zeni, “Characterisation of the transverse
modes in a laser beam: analysis and application to a Q-switched Nd:YAG laser,” Applied
Optics, vol. 31, pp. 2723-2733, 1992.

[17] G. Toraldo Di Francia, “Degrees of freedom of an image,” J. Opt. Soc. Am., vol. 59, pp.799-
804, 1969.

[18] M. Bendinelli, A. Consortini, L. Ronchi, and B.R. Frieden, “Degrees of freedom, and eigen-
functions for the noisy image,” J. Opt. Soc. Am., vol. 64, pp. 1498-1502, 1974.

[19] J.A. Murphy, S. Withington, and A. Egan, “Mode conversion at diffracting apertures in
millimetre and submillimetre-wave optical systems,” IEEE Trans. Antennas Propagat., vol.
41, pp. 1700-1702, 1993.

[20] J.A. Murphy, A. Egan, and S. Withington, “Truncation in beam waveguides,” IEEE Trans.
Antennas Propagat., vol. 41, pp.1408-1413, 1993.

[21] E. Wolf, “Spatial coherence in resonant modes in a maser interferometer,” Phys. Lett., vol.
3, pp. 166-168, 1963.

[22] D.C.W. Morley, D.G. Schofield, L. Allen, and D.G.C. Jones, “Spatial coherence and mode
structure in the He-Ne laser,” Brit. J. Appl. Phys., vol. 18, pp. 1419-1422, 1967.

[23] W. Streifer, “Spatial coherence in periodic systems,” J. Opt. Soc. Am., vol. 56, pp. 1481-1489,
1966.

[24] A. Starikov and E. Wolf, “Coherent-mode representation of Gaussian Schell-model sources
and their radiation fields,” J. Opt. Soc. Am., vol. 72, pp. 923-928, 1982.

[25] F. Gori, “Collett-Wolf sources and multimode lasers,” Opt. Commun., vol. 34, pp. 310-305,
1980.

[26] A.T. Friberg and R.J. Sudol, “Propagation parameters of Gaussian Schell model beams,”
Opt. Commun., vol. 41, pp. 383-387, 1982.

465



