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Abstract

In this paper we consider the Gaussian beam mode analysis of imaging arrays
on submillimetre-wave radio telescopes. We show how it is possible to describe any
of the off-axis beams generated by the array in terms of the same on-axis beam
mode set. The mapping process can be easily analysed using a modal approach.

1. Introduction

Focal plane arrays for submillimetre-wave radio telescopes are now being developed at a
number of observatories. The imaging process in such systems is nearly always described
in terms of Fourier optics [1]. It is more physically meaningful, however, in a telescope
coupled to an array of mixers by a quasi-optical beam guide to develop the correspond-
ing Gaussian beam mode model. In general, multi-mode Gaussian Beam Mode Analysis
(GBMA) of beam guides is particularly powerful in terms of its conceptual accessibil-
ity, offering an intuitive understanding of the way in which submillimetre-wave optical
systems operate [2].

This is a new application of Gaussian Beam Mode Analysis (GBMA), as the approach is
normally used in modelling a single on-axis beam produced by some horn antenna in a
single pixel detection process [3][4][5][6]. Nevertheless, since GBMA should be applicable
to any field which is well defined on some input plane, it should be possible, at least
in theory, to model an off-axis feed horn of an array system in terms of on-axis beam
modes. However, if the on-axis beam mode set appropriate for a single horn is used, it is
obvious that very high order modal contributions are necessary to describe the off-axis
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beams. The feasibility of the GBMA depends on finding a more appropriate mode set
which can describe any off-axis beam of an array with a modest number of modes, and
thus be efficient computationally. In section 2 we describe how the best choice mode
set (from a computational point of view) can be selected in a practical way for an array
of beams propagating through an optical system of finite throughput. The mode set is
parameterized in terms of the most appropriate choice for the beam waist radius, Wo.
The mode set, for which the optics can transmit the maximum number of modes intact,
is the "best" choice mode set, in the sense that it is the one which minimises the number
of modes required in a modal expansion description of the any of the off-axis beams
on the output plane (the sky). The number of modes in the best choice set turns out
to have a natural relationship to the throughput of the optics and, consequently, the
number of independent channels by which information can be transmitted by the optics.
An example case of a telescope fed by a 4 x 4 array of horns is presented to show the
power of the approach.

The natural modes of an imaging system of finite throughput are the eigenfunctions of
the diffraction integral which maps the input aperture (taken to be the field of view of the
telescope) onto the sky [2]. Although these modes are not the same as Gaussian beam
modes, since finite throughput implies truncation, nevertheless the best choice mode set is
a good approximation to the true modes of the system. This is discussed in section 3. In
section 4 mapping and image reconstruction is discussed in terms of GBMA. Describing
image reconstruction turns out to be very natural from this viewpoint, with the Nyquist
rate being related to the total number of modes required in a modal expansion of the
image, again emphasising the fundamental physical significance of the best choice mode
set. In section 5 we briefly discuss how aberrations can be included in the description.

2. GBMA applied to an array of beams.

2.1. Choosing optimum mode set

Gaussian beam modes are solutions to the wave equation parameterized in teims of an
arbitrary beam waist radius Wo and beam waist position. In practice, for computational
efficiency these are chosen so the beam can be described to high accuracy with as few
modes as possible [7]. If we are interested in describing the output beam from an optical
system fed by an off-axis horn, it is not necessary to describe the very high spatial
frequency content of the fields of the horn, because truncation and aberrations will cause
spatial filtering. Thus, the image produced at the output plane by the optical system
will be band limited. Since the spatial frequency content of a mode depends both on
the mode number n and the beam width parameter, Wo , we expect that both the best
choice for Wo and the number of modes required to describe the beam at the output
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plane will be affected by the spatial filtering characteristics of the optical system as well
as on the input field distribution. The optimum mode set is the one with the largest
number of modes not significantly affected by truncation and vignetting in the process
of propagation through the optics from the input plane to the output plane; this is the
mode set which requires the minimum number of modes to describe the fields adequately
at the output plane.

Two stops are, in fact, required to define the optimum mode set uniquely (the same is
true for the definition of throughput). Consider the simple, but instructive, example of
an arbitrary field of finite extent at some plane with a finite sized lens in the far field (see
figure 1). We assume the field has zero curvature on the input plane, so that the beam
waist is best chosen to be there. We define the input and output stop widths in terms
of the extent of the input field (field stop) and the radius of the lens (aperture stop). At
both the input and lens stop the truncation level depends on the local value of r IW, where
3is the radius of the stop. The greater r IW at an aperture is, the greater the number
of Imscattered modes that will squeeze through. However, the fact that the lens is in the
far field of the input plane implies an inverse relationship between the respective beam
widths since W1W2 = Az/7r. Therefore, if we decrease W1 , so as to reduce truncation
effects on the modes at the entrance stop, and thus allow more modes through without
scattering, we unfortunately increase W2 at the lens causing a greater level of truncation
at the exit stop. In this situation we get the greatest number of unscattered modes to
squeeze through both apertures, if we arrange that the level of truncation, defined by
t = r 1W, to be the same at both, so that

ri 	r2
t i t2

VV2

which since W1 W2 = Az/7r, implies

w;2 = 
Azri
7r2

In order to determine the number of modes that can squeeze through a stop, we choose to
define a mode as significantly truncated if the coupling of overall power to the transmitted
propagating mode, thn,trans from the incident propagating mode is less than 50% (see
figure 2). That is, I f (tb!7 ‘,inc n,trans)

dAl2
	(SA Ilgt

 
IdA)2 < 0.5, where the subscript

A denotes surface integration over the area of the stop. For one-dimensional Hermite
modes, it is found that the mode number of the highest order mode which just squeezes
through with 50% coupling loss at the stop of width r is given by nkid (1.2 r/W) 2 . The
number of modes which "squeeze through" is therefore given approximately by

N 
4rir2

Az

The throughput of a stop is defined, in terms of classical optics, to be the product of the
area of the stop and the viewing solid angle, Aa In this case we can take A to be the
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Figure 1. Simple single lens optical system

Figure 2. 50% power coupling loss due to beam truncation for h 10 mode.
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area of the entrance stop at the input plane,which defines the physical extent of the field,
and C2 to be the solid angle subtended by the lens at the input plane. Thus, since for
square apertures, S/ = (2r2/z) 2 and A = (2r1 ) 2 , we can write Af2 (4rir2/z)2 = N2A2.
Thus, the number of modes transmitted turns out to have a natural relationship to the
throughput of the optics.

For a more complicated quasi-optical system the best value of Wa , is effectively defined
by the two most truncating stops in the optical train (see figure 3). These can be found
by estimating the effect of changing Wo on the resulting truncation levels t i ri /Wi at
each truncating stop. The various ti for all of the truncating stops can be plotted as a
function of Wa , as illustrated in figure 3. What we seek is the value of Wa = W0, forfor
which the value of ti for the two most truncating stops is as large as possible. As will
be seen from observation of figure 3, this occurs when the two relevant curves t(W0)
cross. W0 thenthen parameterizes the mode set for which the greatest number of modes is
transmitted through the system.

2.2. Reconstructing the beam pattern of an array

In practice if we wish to reconstruct the output field to high accuracy we can use a
larger number of modes than that defined by the highest order mode that suffers 50%
power loss; 2N modes is usually more than sufficient. Although we intimated above that
any mode that suffered less than 50% power truncation at any stop effectively squeezes
through the optics, in practice, of course, the higher order modes do suffer some power
attenuation and scattering to other modes [8]. A full scattering analysis needs to be made
of the system and the scattering matrix S evaluated, but just including (2N) 2 modes [9].
Since the optimum mode set is used in determining S, it will tend, in fact, to be almost
diagonal. The significance of this is discussed further in the next section.

As an example we take an 4 x 4 square array of long square scalar horns of sidelength a,
feeding a telescope with, for simplicity, a square aperture of sideleng-th b. The telescope
reflector we will assume to be in the far field of the array, at distance of z = f, the focal
length of the telescope. We can take the aperture field of the horn to be given by Eh =
• cos(rx/a) cos('rry/a). The best fit Gaussian beam to Eh has a beam width parameter
at the horn apertures of Wh = 0.350a; thus, to a good approximation the field at a horn
mouth can be taken to be Eh = Ea exp(—(x2+y2)/W). If we assume a 10dB edge taper
at the telescope aperture (of width D t), then for the Gaussian beam approximation to
Eh at the telescope, Wht = 0.466Dt . This implies that Wh = 1 71-Wu = 0.684AF, fixing
a = 1.95AF, where F is the F-ratio of the telescope beam given by F f I Dt . For a
single on-axis horn beam it would be adequate to use a mode set parameterized by a
beam width parameter of Wh, to describe the beam propagation. The best choice of Wf
for the array on the focal plane, however, depends also on the extent of the array, which
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Figure 3: Truncation levels as a function of Wo for stops in optical system.
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defines the input pupil as well as the exit pupil. W1 is given by

Af.4a rAdd 1.58AF = 0.808a.

We expect to be able to adequately describe the 4 x 4 array of beams on the sky with
(2N x 2N) modes, where

IV 'Add (1.2 x 2a/W1 ) 2 rr:: 9.

Figure 4 shows a 1-dimensional cut through the array of beam patterns reconstructed on
the sky.

3. Integral Analysis - interpreting the best choice mode set.

The natural modes of an imaging system of finite throughput are the eigenfunctions of
the diffraction integral equation which maps the input plane onto the output plane [21.
Assume that we have some optical system, and that we wish to find the field at the output
plane, B2, corresponding to a given field at the input plane, El . By linear superposition,
the field at the output plane is expressible in the form [2]

E2(r2) = E1(ri).K(r2Iri)dS

where r1 and r2 are coordinates in the input and output plane respectively, and K(r211'1)
is the appropriate kernel, also known as the point spread function or transfer function.
In the case of any array the kernel is the field pattern on the sky of a point radiator (or
detector) at the plane defined by the imaging array. This function includes the influences
of all the optical components.

From the modal (or eigenfunction) point of view we can look for field distributions, 0(r)
that remain unchanged after passing through the system:

AO(r2) = 0(ri).K(r2ir1)dS

The fact that in general fAl < 1, implies that mode attenuation in the system is pos-
sible. This happens through a process of truncation and diffraction which nevertheless
reproduces the input field distribution at the output plane. These eigenfunctions can be
thought of as modes of the system rather than free space modes. In fact, if the optical
system is perfect, in the sense of producing no truncation or aberrational effects, the 4(r)
clearly have the same functional form as the Gaussian beam modes, at least in the limit
of the Fresnel approximation [10], [11]. We can expand any field in terms of these nounal
modes. Thus, E1 (r1 ) = E Afi ckn (r i ), while E2 (r2) = E AnAnOn(r2).

7rDt
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Figure 4: Beam patterns on sky due to an array of horn antennas

(produced with an 18x18 mode set). Note:e 0 = a 1 f
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In any real quasi-optical system clearly the optical components (lenses, mirrors, stops,
pupils etc.) making up the beam guide will be finite in size, and may introduce aberra-
tions into the beam. If we analyse propagation through such a system using propagating
Gaussian beam modes, rather than applying the diffraction integral, we have to take into
account the fact that the beam is no longer in free space as it propagates in the vicinity
of an optical component. Boundary conditions are introduced by such components, and
only certain linear combinations of the free space modal solutions are possible at the
aperture (analogous to the modes in a waveguide). This situation can be handled using
scattering matrix analysis [9], where an incident free space mode is regarded as having
its power attenuated both because of truncation, and because the truncated mode that
results is not a pure propagating mode, so that there is scattering of some of the trans-
mitted power to other modes as well. This scattering process may happen many times
in a real quasi-optical system and an overall scattering matrix for the system S can be
computed.

For the best choice of W the scattering effect is minimised on the maximum number of
modes, resulting in the scattering matrix S for the optical system being approximately
diagonal. These beam modes, On, are therefore good approximations to the true eigen-
modes of the optical system for those modes for which the magnitude of the eigenvalue is
effectively unity, A I = 1. We can in fact derive the eigenvalues and Gaussian beam mode
expansions for the eigenfunctions of the integral equation by computing the eigenvalues
and eigenfunctions of S, defined by Sxn = Anx

n . Here xi is a vector of mode coefficient
{xn, in terms of which On can be expanded On, = Ei xl*i . (Note that even though it
may not be always possible to derive On analytically by solving the eigenvalue integral
equation, it often still possible to obtain a mode expansion of the solution.)

4. GBMA of Mapping

Consider a source field with a brightness distribution B(0,0), which is to be mapped by
a radio telescope fed by an array of horns. When the source is observed with an antenna
of power pattern P(9,0), a flux density So is observed given by [12]

so = I B(8, 0)P(0 , 0)dMO
sour ce

In the imaging system P(0 ,O) represents one of the array of beam patterns produced by
the telescope. Consider off-axis horn i, with a field across its aperture expressed as an
expansion in terms of the optimum mode set, and given by

Ei(x,y) = E Atmnh W ) hn(Y; W)-
m,n
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Here , etc., represents a Hermite Gaussian mode of order m, parameterized by
the optimum beam width parameter, W, and defined by

Hm ( Nix IW) x2 x2 \
hm (x; W) = 

2

m

mY7/2 W 

exP W2 j ,\Ti) •

The corresponding telescope beam pattern is given by PO , 0) = lEi,3 (9 , 0)1 2 where
Ei,3 (9 , 0) , the field pattern on the sky, is given by Ei,s(e , c6) = Em,n Cmni hm (9 ; W ) hn (0; W)
with the On?, related to the 4 via the usual scattering relationship

ctn . E
m,m,n,v

(in matrix notation C = SA.) Note, that here w is the corresponding best choice beam
width (in angle) on the sky, assuming small angles. Since we have chosen to analyse the
problem in terms of the optimum mode set, we can define the scattering matrix to be
finite in size so that mmax Amax = = vmax = N, where N is mode number of the
highest order mode that just suffers less than 50% power coupling loss at each of the two
most truncating stops. Thus, Civ N is the highest order mode coefficient, and the highest
order mode in the expansion at the output plane for 0) is hN (e, u.))hN (0, w).

Pi (O , 0) can be written as the bandlirnited bi-modal sum

= E (c7n.n)*(c7nin,) [hm(0; w)* hmi (0 ; Lo)i[ 1112(0; w ) * hn' (0; w )l-
m.,ml,n,n1

It is possible, however, to write this in a more convenient form. The product [hm (0; w)*1-tm , (0; Lo)
is a polynomial p of order m mi in 91w, multiplied by a Gaussian term exp(—(91w)2),
to be squared

[hm(0;w)*hm, (0 ; co)] oc Hm,( Nik w) exp(—(91w) 2 ) H (-4-9 w) exp(—(9/w)2).
= prn+,,,(91c.o)exp(-2(9 /w)2)

But any polynomial of order m+m,' can be written as a finite orthogonal series of Hermite
polynomials,

rn+777,1

Pm-Fm i (e/W ) = E rikHk(c(e/w)),

where c is any constant. Therefore, if we define (2.)1, = I the bi-modal product
[hm (O, u.))*hm , (0, w)] can clearly be re-expressed precisely in terms of a finite sum of Her-
mite Gaussian modes (with the Gaussian beam width, wp),

m+rre

cor hm, (8, co)] E xk hk (t9; w p)
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Thus, P(9, 0) becomes a standard beam mode expansion of the form

2N
Pi(0 (k) = hk(O, w p) MO; P))

k,1

where the mode coefficients Pia are

E(C:nr,Cmin'emmikenn11)
m

i
 fit ,W =0

and
Crnml k = f hk, (9, p) [160 wr hm, (0; La)] a

Note that hk (9) is real (i.e. R = oo), so hk (0) = hk (9)* • Clearly, if the mode expansion
for the horns Ai

mn and the scattering matrix for the system S mi,,n, are known, then the
.P1, 1 are readily calculable. Wp is best choice beam width parameter for the mode set for
describing the beam pattern on the sky, P2 (0, 0) , as any other value for w would require
a larger number of modes than 2N x 2N in the modal expansion.

vi represents a measurement of the flux coupled from the celestial source to the ith horn,
[12], [13].

= f P(9, (0 , 0) a clO = I , 0)1 2 	, 0) &MO.

Using the natural mode expansion for Pi (6• , 0) , the relationship for Vi becomes

2N

Vt = 1 E Pi
z
a hk (0; w p) MO; p)B(0 , 0) ClOCIO,

k,1

which can clearly be re-expressed as

2N

Vt = E
k,1

where
Bkl = f hk (9, p)h1 (0; (.0 p)B (9, 0) dOCO.

We therefore have generated a set of simultaneous equations for the Bki. Assuming the
equations are linearly independent, we can therefore, by measuring Vi at 2N x 2N posi-
tions of the horn, solve for the Bki. The equation for Bki indicates that it is possible to
express B (9 , 0) as a mode expansion

2N
B(9,0) = E Bki hm (61 , w hr,(0, Lc) p)

k,1
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However, the sum is finite, since Bki can only be determined for k and 1 < 2N, indicat-
ing in terms of mapping that only a bandlimited image of B(0,0) (in terms of spatial
frequencies) can be reconstructed from a set of measurements 14.

The relationship with Nysquist sampling can be derived in a straightforward manner.
Consider the case where the beam width parameter at the telescope focal plane is W1,
and the corresponding beam width at the telescope is W. If the telescope is in the far field
of the focal plane then, WfWt = Af For an array with a field of view of cl„, the number
of propagating modes is given by both N (1.24/2W1 ) 2 , and N (1.2Dt/2Wt) 2 , so
that we obtain

N = 1.44
4f

dv

•4Af FA.

In order to obtain the reconstruction of the source brightness to the highest resolution
of the telescope we need to take approximately 2N measurements with the horn array.
But, this implies a sampling interval of approximately 2d,,/FA, exactly the same as the
Nyquist sampling rate! The measurements are best made at equal intervals, though
this is clearly not necessary for the recovery process. In fact beam distortion (due to
aberrations in the optical system feeding the telescope) in the case of arrays often results
in slight differences in the inter-beam intervals on the sky.

Since the Gaussian beam modes are not the true eigenmodes for the system, but rather
approximations to the true eigenmodes, choosing the value for N to be given by the
order of the mode that suffers just less than 50% power coupling loss is to some extent
arbitrary. However, if N is set much larger, the highest order CL, will have very small
values, and the inversion process will become unstable. A similar concern arises in a
Fourier optics approach, as the highest spatial frequency contributions to the image can
only be measured with vanishingly small accuracy, which in the presence of noise may
not be the reliably extracted.

We illustrate the mapping process with a one-dimensional example. Again we consider
an array of 4 horns. Figure 5 illustrates the inversion process. The input source intensity
pattern is a uniform extended source with sharp edges. The image on the focal plane
of the telescope has elongated wings. The reconstructed (deconvolved) field using the
beam mode approach shows sharp edges, with some ringing effects because of the finite
number of modes used (inevitable with a top-hat distribution).

5 Aberrations

We can deal with aberrations in a natural way within the beam mode description of map-
ping, since the effect is to change the mode coefficients Orin for the output field expansion
[14],[15]. Aberrations cause mode distortion at an optical component, introducing extra
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Figure 5. Mapping of extended sources
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Figure 6. Effect on output beam patterns of a one dimesional aberration function
of form (I)(x) = exp(-jax2) at aperture stop of telescope. Note:0 0 = a 1 f
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inter-modal scatterings of the propagating modes (see figure 6). In severe cases such
an effect may result in more severe attenuation at subsequent stops in the system than
would otherwise be the case, with a consequent reduction in the overall total number of
modes that can propagate from the input to the output plane. Also, for beams at the
edge of the array we might expect more severe aberrational effects, so that the output
beams on the sky are not ideal replicas to the on-axis beam. In the theory of Fourier
optics this variation in the beam pattern across the output plane causes problems for the
analysis, whereas in Gaussian beam mode theory only the mode coefficients for the beam
are affected, and thus no difficulty arises. In fact, different types of horns could be used
for the array, generating a non-identical set of output beams on the sky, without caus-
ing any problems for the reconstruction process (provided the mode coefficients for the
horns are known, as well as the scattering matrix of the system.) Figure 6 illustrates the
distorted set of beam patterns calculated using GBMA, that result in a one-dimensional
array with a non-negligible phase error across the aperture stop of the imaging array.

6. Conclusions

We have considered in detail how to choose the best mode set, in terms of computational
efficiency, with which to describe beam propagation in quasi-optical multi-beam systems.
For the best choice only a finite and well defined number of modes are propagated by the
system. This number is related to the throughput of the optical system giving physical
significance to that mode set choice.

We have also considered how the mapping of incoherent sources can be expressed in
terms of modal analysis. The reconstruction process becomes one of solving a set of
straightforward linear equations. Aberrational effects can also be included.
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