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Abstract—In this paper the electromagnetic mod-
eling of an integrated (eye) lens antenna with an ad-
ditional objective lens is decribed. Two different
field calculation methods, Geometrical/Physical Op-
tics (GO-PO) and Physical/Physical Optics (PO-P0),
are compared for various diameter over wavelength
ratios of the integrated lens antenna. The main dif-
ference between both methods is that in case of PO-
PO, the entire eye-lens contributes to the PO cur-
rents at a point on the outer objective lens surface,
while only one GO ray contributes in case of the GO-
PO method. The comparisons show that the GO-P0
method can be used as a good first-order approxima-
tion. However, if a more accurate prediction of the
beam pattern is required, then the PO-P0 method
should be applied.

I. INTRODUCTION

TT IS OBVIOUS that with the availability of in-
tegrated planar antenna technology extremely

compact receivers can be made. This technology is
quite suitable for imaging arrays which are of great
interest for both space astronomy and atmospheric
research. Particularly in astronomy most of the
spectral line emitting regions are usually spatially
extended over many observing beams in the sky
and therefore mapping is required to understand
the astrophysics of these regions. In atmospheric
research, imaging is used for profiling, rain sound-
ing, etc.

For imaging purposes the hyperhemispherical
integrated lens antenna (HILA) is often applied in
combination with an objective lens, because of the
nearly aberration free performance. Another rea-
son for using an objective/integrated lens antenna
combination is the matching of the beam of the
HILA to the beam required to properly feed a typ-
ical Cassegrain or Gregorian telescope.

Usually, the objective lens is placed in the Fres-
nel zone of the integrated lens antenna and this
does not validate the use of the far-field radiation
pattern of the HILA in the analysis of the combined
quasi-optical system. Then, the most straightfor-

ward way of modeling the objective/integrated lens
antenna combination is by means of Geometrical
Optics (GO) from the planar feed of the HILA to
the outer objective lens surface and subsequently
Physical Optics (PO) to obtain the far-field pattern.
However, the GO analysis does not include the
wave diffraction due to the limited lens size of the
HILA. To improve the accuracy of the modeling, a
PO method will be described which takes the radi-
ation from the entire eye-lens surface into account
to calculate the PO currents on the outer surface
of the objective lens. A Fourier decomposition is
applied to the second PO integral to speed up the
calculations.

II. DESIGN

A. General Aspects

For certain applications, like imaging and quasi-
optical beam transformers, it is needed to include
an objective lens in front of the integrated lens
antenna, and the resulting configuration is shown
in Fig. 1. Here the objective lens is placed in the
Fresnel zone of the lens antenna which is generally
the case.

When the objective lens is used as a beam trans-
former, the incoming Gaussian beam (first order)
is changed into another Gaussian beam with a dif-
ferent beam waist or phase center. For imaging it
is important that a sharp image of a certain object
is obtained and this means that an incoming plane
wave has to be focused to the planar feed of the
lens antenna. In the next section it will be shown
that a number of different objective lenses can be
applied for this purpose.

B. Lens Types

For imaging applications the shape of the objective
lens is designed as to produce a spherical or nearly
spherical phase front at the eye-lens aperture. To
achieve this two different surface-lens types can be
used El]:
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integrated lens antenna
(eye lens)

objective lens

Fig. 1. Geometry of integrated lens antenna (with matching layer) in combination with an objective lens.

• single-surface lenses
—hyperbolic inner and flat outer surface
—spherical inner and flat outer surface
—meniscus lens

• dual-surface lenses
—flat inner and curved outer surface
—curved inner and outer surface

For the single-surface lenses refraction of the in-
cident wave only takes place at one surface of the
objective lens, while for the dual-surface lenses
both surfaces change the direction of propagation.

For imaging applications it is required that the
side lobes of the quasi-optical system are low and
this cannot be achieved by means of a fiat field dis-
tribution in the aperture. The meniscus lens will
give a nearly uniform field distribution and there-
fore this lens type is not preferred. A disadvantage
of the dual-surface lenses is that their fabrication is
somewhat more elaborate than that of the single-
surface ones. In practice the spherical lens is more
often used than the hyperbolic one, and therefore
in this paper emphasis will be put on the spheri-
cal single-surface lens. This means that in, Fig. 1,
surface Si. is part of a sphere and S2 is flat. It is
noted that the spherical single-surface lens does not
transform an incoming plane wave into a spherical
one, but in the thin lens approximation (thickness
of lens negligible to focal distance) it does.

Ill. ELECTROMAGNETIC MODELING

A. PO-PO

When the objective lens is placed in the Fresnel
region of the integrated lens antenna, the far-field

approximations can not be used and it becomes
necessary to start with the original Physical Optics
integrals. Silver [2] showed that for the electric
and magnetic fields in any observation point P the
following equations hold:
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In the integrands of these equations, the operator V
acts on the source element coordinates and there-
fore the following results are valid [2]:
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If the fields are evaluated in the Fresnel and Fraun-
hofer region of the integrated lens antenna (r >
0.62 /D3 /A), the terms with 1/r and 1/r2 can be

(3)

390



= xH(Q)
(7)Ms = x .E_(Q)

neglected and the fields of (1) and (2) become: To obtain the far-field radiation pattern of the
objectivefmtegated lens antenna combination, the
Physical Optics equivalent current densities have to
be computed at the outer objective lens surface and
then the standard PO integrals can be determined.
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These equations show that the fields in point P
can be treated as an infinite summation of spherical
waves (spherical wave expansion) originating from
the lens antenna surface. The complex excitation
of these waves is given by the equivalent electric
GTO and magnetic ()j) current densities, which
can be calculated from the pattern of the planar
feed in the dielectric lens by using:

Because the H-field of each individual spherical
wave is related to the E-field according to:

x E
H = (8)

ZO

only the E-field will be considered in the remain-
der of this analysis. If the objective lens is included
in the design, the refracted wave in point P on the
inner surface propagates to point P' on the outer
surface. To describe the fields and currents at the
outer side of the lens, the influence of the lens has
to be modeled. By means of Geometrical Optics
each spherical wave can be traced through the lens,
which means inclusion of the transmission coeffi-
cients, the spreading factor from the inner to the
outer surface and an additional phase change. Fi-
nally, if all effects are accounted for, the following
integral is obtained:

E ( p' ) 	 f f [is —( . er)e,
4744)4 S

= = e—jkr—jkddi1—Of X er)1T1T2D
F dS (9)

ZO 7'

with DF the divergence factor, T i and the
dyadic Fresnel transmission coefficients at S1 and
S2 respectively, and d1 the length of a ray inside
the objective lens.

In the previous section the PO-PO method was de-
scribed, where the entire eye-lens surface is taken
into account in the calculation of the fields in P'.
Another method, which is extensively used in op-
tics, is GO-PO and here only one ray from the
planar feed to P' is used. This means that GO is
applied from the feed to the outer surface of the ob-
jective lens. The validity of this method depends on
the size of the eye lens, the distance between eye
and objective lens and the frequency. The larger
the eye lens is in terms of a wavelength, the more
accurate the method will be.

Because the transmitted ray passes through two
refraction points from feed to objective lens, the
ray-tracing is more complex for this method than
for the PO-PO method. In this paper hyperhemi-
spherical eye lenses will be used, which offer the
possibility of tracing the rays from the virtual focus
to the objective lens (see Fig. 1). It should be noted
that when this method is applied, the small lateral
shift of the ray due to the matching layer will be
neglected in the ray-tracing procedure [3].

C. Ray-tracing Procedure

In Sections fli.A and ffl.B the electromagnetic
fields were described on the outer objective lens
surface (52). For an efficient PO integration
scheme the equivalent currents, corresponding to
these fields, must be defined in a regular grid. Of
course this requires a ray-tracing procedure to find,
for each grid point on S2, the refraction points on
the first lens surface (Si ) that correspond to the
source points on the integrated lens antenna (see
Fig. 1). In Fig. 2 the configuration for the ray-
tracing and the symbols used are depicted.
First a center of the curved inner surface of the
objective lens is defined (point C). For the spher-
ical lens this corresponds to the real center of sur-
face S1 . The cross-section plane that is shown in
Fig. 2 contains the incident ray, the refracted ray
and the normal vector in B, because the normal
vector equals the unity vector from C to B. It con-
tains also the vectors from C to P' and from C
to Q. It should be clear that the wanted refraction
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E(P") = Cl ff
S2
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Fig. 2. Ray-tracing from source point Q to grid point
P' on second objective lens surface.

point is to be found in this plane. The phase from
source point to observation point is determined by
the distances d1 and d2 which are given by:

d1 = V(CP9 2 + R12 — 2(CP9R1 cos(ao — a)

(10)

d2 = V(CQ)2 + R1
2 — 2(CQ)111 cos a (11)

with (CQ) and (CP') the distances from C to Q
and from C to F', respectively. Refraction point
B is found for an angle a, that corresponds to
a minimum of the function nddi + d2 (shortest
electrical path length).

D. Far-field and Fourier Decomposition

Now that the fields at the second objective lens
surface (S2) are known, it is possible to compute
the far-field of the total system (eye plus objective
lens). For this PO is used and Eqs. (5) and (6) de-
scribe the fields in any observation point. However,
because in this paper we are only interested in the
far-field of the antenna system, a few approxima-
tions can be made [2] and these result in:

5...(pn) = _ic.0110e—jkR

4irR 1152 - .)R
Zo

x eR
, ] 4kr' dS2 (12)

with J' and M' the equivalent current densities
on the second objective lens surface (S2). Every
far-field pattern, beam and Gaussian beam effi-
ciency calculation requires many of these double-
integral computations to be performed, which are
very time-consuming. Therefore, it would be el-
egant to rewrite (simplify) Eq. (12) and speed up
the calculations. By using a similar expansion as

CO

= E km(pi)ei"'
771=-00

(19)

mentioned in Ref. [4], Eq. (12) is rewritten as:

with c1 and ..A7(x r , 2i ) defined as:
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Cl =
4-irR

(14)

(15)

The next step is to transform the integration over
the, generally curved, surface S2 to an integration
over a plane aperture with diameter D. To do so,
the normal vector of S2 is needed and the Cartesian
coordinates (x 1 ,4 of point P ` are transformed to
polar coordinates (p' ,(p'). Then Eq. (13) changes
to:

27 DI2

E(P") = f , cd)eikri 4' (16)

o o

with

2(d, = l_v_(x`, z')cid

,\/
852)2 ( )8,52

1+ (-6-7 +

To calculate G. in (17), x' and z' have to be substi-
tuted by p' sin yo' and p' cos go', respectively.

By describing P' and P" with their spherical
coordinates, (r' , (p') and (R,1 9,  and inserting
these into (16), the next equation is found:

27 D/2

=1 1 
ekri cos e cos 19' G ( 0/ , cot)

0 0

ejkp' sine cos(v—
V)dpi dcp/ (18)

In the following only one component (x) of the
electric field will be considered, because the others
can be treated similarly. A new variable is defined
and directly decomposed into its Fourier series:

K (pi cot) elm' cos o cos e G. (pi , (d)

Hun

The coefficients km, can be found simply by taken
a Fast Fourier Transform (FYI) of the function K.
By substituting the Fourier series of K into (18)

(17)
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the following expression for the s-component of
the electric field is obtained:

27r D/2 00

Ex(P") f E km(P')e3ni2"

ejkp' sin 29 cos (cp—so' ) dp, thpf (20)

Interchanging the integration variables and using
the known relation for the rn th-order Bessel func-
tion J7, [5]:

27r
jrn (u) = f ej(usincp' —mcp') thpi

27r
0

gives:

D/2 co

Ex(P") = 27r f E km(d)
0 rn=—co

J_m(kri sint9)dp` (22)

if the observation point P" is located in the plane
= 7r/2. It should be mentioned that in the in-

tegral of Eq. (22) the original integration interval
[—r, 7r] is changed to [0, 27r]. Of course also other
observation planes can be chosen, but then an extra
phase term should be added:

D/2 co

Ex (P") = 27r f E Ic.,„(d)
o m=—c°

J_,„(kp' sin 29)en(7112— (P) cld (23)

In principal an infinite number of terms need to
be included in the Fourier series decomposition.
However, computer simulations showed that, de-
pendending on the value of p', 11-15 Fourier terms
are sufficient to describe the function K. However,
to numerically evaluate Eq. (23) the integral from 0
to D/2 has to be written as a finite summation. In
the software that is used to generate the results for
this paper, the integral is carried out by applying
Gaussian quadratures. Then only a small number,
compared to conventional integration procedures,
of fixed p' are needed.

The CPU-time saving by using this decomposi-
tion was tested for an integrated lens antenna with-
out objective lens. It was found that the compu-
tation time can be decreased by more than 50% if
the number of observation points is larger than 80.

Of course the time saving will be less for the com-
plete quasi-optical system, because the calculation
of the PO-currents on the outer objective lens sur-
face is more elaborate than the calculation of the
PO currents on the eye lens. Nevertheless, usually
not only the far-field patterns are computed but also
the efficiencies and then the Fourier decomposition
will result in a more efficient use of the CPU time.

IV. SIMULATION RESULTS

In the examples in this section the two different
methods will be compared for various operating
frequencies. To test the accuracy of the GO-PO
method, the co- and cross-polar radiation patterns
are computed and compared with the results from
the more accurate PO-PO method. In Fig. 3 the
patterns are depicted for an antenna system op-
erating at 500, 1000 and 2000 GHz, where the
diameter of the eye and objective lens are 6 and
30 mm, respectively. The hemispherical eye lens
is made of silicon (c, = 11.7) and has an ex-
tension length of 0.877 mm (hyperhemispherical
condition). To minimize the reflection losses, a
quarter-wavelength matching layer is put on top of
the silicon lens. For the 4.35 mm thick objective
lens, with a spherical inner and flat outer surface,
high densitiy polyethylene (cr. = 2.3) is used and
this lens is placed at a distance of 36.7 mm from
the center of the eye lens. The radius of curvature
of the inner surface of the objective lens is taken
28 mm, which results in an optimized directivity of
more than 41 dBi at 500 GHz. As planar radiator a
double slot is chosen with a length of 0.284 and a
separation between the slots equal to 0.164. This
feed design results in a good rotationally symmetric
pattern within the eye lens.

It can be seen from Fig. 3 that the results ob-
tained by the GO-PO and the PO-PO methods be-
come more alike, observing the main lobe and the
first side lobes, for increasing frequencies. This
is expected as GO is a high-frequency technique.
For the lower frequencies however the discrepan-
cies are significant and therefore it can be said that
the use of the more elaborate PO-PO method is
necessary if an accurate prediction of the far-field
patterns is needed. Furthermore, it should be noted
that GO-PO method can be very useful to get a
first-order approximation of the beam pattern, be-
cause the computation time is negligible compared
to the PO-PO method.

(21)
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V. CONCLUSIONS

Quasi-optical systems, consisting of a feed with
an additional objective lens, can play an important
role in applications like imaging. The modeling of
these systems becomes more complex due to this
extra lens. In this paper two calculation methods
are compared with each other, GO-PO and PO-PO,
of which GO-PO is the more traditional and PO-PO
the more accurate. The analysis showed that GO-
PO can be used as a good first-order approximation
of the main lobe and the first sidelobe. However, if a
better prediction of the far-field pattern is required,
then the field contribution of the entire eye-lens
surface has to be included into the modeling and
this is done by means of the PO-PO method.

Also in this paper, a time-efficient procedure is
described for computing the far field of the entire
quasi-optical system. The PO integrals are rewrit-
ten in such a way that a Fourier decomposition of
the integrands can be made and this can decrease
the computational effort by more than 50% if the
far fields in many observation points are needed.
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Fig. 3. Co- and cross-polar patterns for various frequencies (solid: PO-PO; dashed: GO-PO).
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