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Abstract

We have extended the spectral domain harmonic balance method of Withington and Kollberg :1]
to handle quasiparticle mixer circuits of arbitrary complexity containing any number of supercon-
ducting tunnel junctions. Our algorithm uses a multidimensional Newton-Raphson technique to
achieve rapid convergence. even when many harmonics are included in the analysis. Another im-
provement is to perform all linear circuit calculations using the scattering matrix representation
typical of modern circuit modeling techniques. This algorithm has been implemented as part of
an extensive C++ class library for modeling the signal and noise performance of superconducting
heterodyne receivers (Super -Mix). Using the common. free C++ compiler - g++" (Free Software
Foundation). impressive results can be achieved on modern workstations of moderate capability.
Such speeds will make complex nonlinear optimization calculations a routine part of SIS receiver
design.

I. INTRODUCTION

As the state of the art in submillimeter wave heterodyne mixers utilizing supercon-
ductor-insulator-superconductor (SIS) devices has progressed. SIS mixers are rapidly
evolving to ever more complex and wide bandwidth designs. Examples include a
sideband separating mixer [2]. distributed junction arrays [3]. and a dual-polarization
receiver [4]. Additionally, the quest for wide IF bandwidth is spurring several inves-
tigations regarding the design of integrated SIS/HEMT receiver systems. To success-
fully optimize the performance of such sophisticated designs. accurate and efficient
software modeling is required. Correctly calculating the complex interactions of the
nonlinear responses of multiple SIS junctions will be vital to the success of such mod-
eling. Consequently such software must include a fast and accurate harmonic balance
method.

The small signal response of an electronic circuit containing nonlinear elements.
such as a mixer, obtains from a perturbation analysis of the operating state. The
operating state is determined by the large signal voltage and current waveforms across
the nonlinear elements. Clearly it is essential to accurately determine these waveforms
in order to proceed with the small signal analysis. The harmonic balance technique
is a well established method for determining these large-signal waveforms.

For the purposes of harmonic balance, a network involving two-terminal nonlinear
devices is normally modeled as in figure 1. Each nonlinear device is connected to its
own port in the linear embedding network: the network includes dc and ac sources.
The goal of harmonic balance is to determine the voltage and current waveforms v(t)
and i(t) at each nonlinear device, thereby fixing its operating state and resultant small
signal behavior. Traditionally harmonic balance proceeds by analyzing the linear
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Fig. 1. SIS junctions attached to a linear network.

network in the frequency domain. constructing the Thevenin or Norton equivalent at
each of the harmonic frequencies present in the network. Concurrently a time domain
calculation of the response at each nonlinear element is conducted starting with some
suitable initial driving function (current or voltage). The results of the two analyses
are compared following suitable transformation; differences lead to adjustment of the
harmonic signals present at the ports of the linear network and the time domain
waveforms used for the driving functions of the nonlinear elements. The process is
iterated until reaching convergence of the solutions. Hicks and Khan [5] provide a
detailed analysis of this technique and its convergence properties.

In the case of mixers utilizing SIS devices as the nonlinear elements, the tradi-
tional harmonic balance approach outlined above has a very serious limitation: the
time domain analysis must proceed for many cycles in order to determine the steady-
state waveforms. greatly increasing the computation time for each iteration of the
procedure. This limitation was overcome by Withington and Kollberg [1] who de-
veloped an algorithm for performing the nonlinear analysis of such devices purely in
the frequency domain. a technique they refer to as spectral domain analysis. Start-
ing from the mixer theory of Tucker [6]. they develop the equations needed to fully
analyze the frequency domain current response of a single SIS junction to the set of
large-amplitude voltages induced by a dc bias and local oscillator source.

This paper extends the results of Withington and Kollberg to networks containing
multiple SIS devices. The large signal solution is found using a multidimensional
Newton-Raphson technique to achieve very rapid convergence, even when several
harmonics and junctions are included in the analysis. The technique requires the
Jacobian matrix of the nonlinear SIS response to changes in the large signal voltages.
As will be shown. this matrix can be easily generated from the small signal RF
conversion matrix. A final improvement is to conduct the linear circuit calculations
using the scatterin g matrix representation rather than an impedance or admittance
representation ( which might not exist for certain circuit configurations).
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Fig. 2. Typical normalized SIS I-V characteristic curves

II. THE HARMONIC BALANCE EQUATIONS

A. Nonlinear Calculation of the Harmonic Currents

To perform the spectral domain analysis of the SIS operating state. the voltages
and currents across each junction are represented as:

v(t) = Vo" + Re m=1 eirriWot ; i(t) = R Lt=, e-777-3t (1)

where Vo and /0 are the constant (de) components. 'o is the local oscillator frequency.
and the Tim' and I, are complex phasors. In the case where the circuit contains a
single junction, the Fourier coefficients in (1) can be represented by the single. complex
valued vectors v and i; if there are multiple junctions, these vectors will still be used.
but the individual components will be denoted by VT,7, and 1.

77e . where m is the harmonic
number (m = 0 for the dc component) and n is the junction index. ranging from 1
to the total number of junctions in the circuit. Withington and Kollberg's ada.ption
of Tucker's mixing theory provides an "admittance - representation of an SIS device:
the junction currents i are calculated from the junction voltages v. i = i(v).

The currents through an SIS junction may be calculated as follows ( cf. '11):

= Re [1- (o)] Im -1-( m) m > 0

where:

I(m) = — E ckcr-±,. i(vo + kvph) • < 17/ < OC (3)
k=—oo

In this equation 1/0" is the junction dc bias voltage, Vp. h (h I e) ,co is the photon
voltage of the local oscillator frequency. the Ck are complex phase factors defined
below, and 1(v) is the complex dc I-V characteristic function of the junction. 1(v) E
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Ikk( l-' ) Idc(v). Td(V) is the measured dc I-V characteristic curve of the junction;
Ikk (v) is its Kramers-Kronig transform. A typical Ide(v), Ikk (v) pair is shown in
figure 2. where the curves have been normalized so that the junction's gap voltage and
normal resistance are both unity. Various versions of the Kramers-Kronig transform
are seen in the literature; the version shown in figure 2 is that due to Tucker, which
vanishes at V = 0:

1 oo 1
Ikk(V) = P 

f 

Idc(v) 
)

V
( 1 — (4)

— v'

where the P denotes the Cauchy principle value of the integral. Id(v) is an odd
function and Ikk (v) an even function of the voltage v, so that I( — v) = r(v). The
parentheses around the subscripts in (2) and (3) are used to distinguish harmonic
indices of Fourier coefficients which range over negative as well as positive values;
harmonic indices without the parentheses may take on nonnegative values only. This
notation will be used extensively in Section III.

The complex phase factors C k are defined by:

00
Ck=lim C ro _ s 

Ork'.
 . on>0 on-1 A

k . k v k
T72 =-CO

where 60 , k is Kronecker's delta and the complex coefficients Am ,n are given b

Am. Jrn(an) e
—jrnn (6)

The coefficients an and On are derived from the magnitude and phase of the har-
monic voltage phasor . where the magnitude is normalized by the photon voltage
of harmonic n, which is n h :

63'" = lin /(n Vph) (7)

Expressions (2) to (7) define the harmonic currents through a junction in terms
of the harmonic voltages thereby defining the vector function i(v). Note that
the functions A. of the V, (expressions (6) and (7)) are not analytic; this will
be an important consideration when constructing the Jacobian matrix used by the
Newton-Raphson algorithm.

B. The Junction Operating States and the Linear Network

The linear embedding network (figure 1) connecting the junctions will be repre-
sented as having a port for every junction at every harmonic frequency and dc; its
behavior may be represented by a scattering matrix S and wave source vector bs.
Referring to figure 3. the linear network experiences incoming waves a and responds
by emitting waves b. Because there are active sources embedded in the network (the
dc bias and local oscillator). the network will emit waves b s in the absence of any
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Fig. 3. The scattering matrix representation of a linear network.

incoming waves (as well as noise, which we ignore for the purposes of harmonic bal-
ance). Also indicated in figure 3 are the conventional voltages v and currents i at the
ports. The various vectors are related as follows:

b=--b s +Sa; v=03-1- Zo ; i = (b — a), v Zo (8)

where Zo is the normalizing impedance of the scattering representation of the net-
work (usually 50 CO. A major advantage of the scattering representation over the
impedance and admittance representations of a linear network is that it always exists:
some common networks have either no impedance representation or no admittance
representation. Note that the voltages and currents in (8) are RMS. whereas the vec-
tors of Fourier coefficients from (1) are peak amplitudes. This means that we must he
careful about factors of-\/.2 for the ac coefficients when solving the harmonic balance
equations.

The relationships in (8) where v and i are the RMS harmonic voltages and currents
through the SIS devices attached to the network lead to the nonlinear system of
equations which must be solved by the harmonic balance routine:

Zo (I S) i(v ) (I — v Zo bs = 0 (9)

where I is the identity matrix. One advantage of this scattering matrix formulation is
that the impedance and admittance matrices are not needed: as already mentioned.
one or the other of these matrices may not exist. For example. a mixer circuit
containing a series array of junctions would not have an impedance representation.

C. Newton-Raphson Iteration Calculations

The Newton-Raphson method for solving a nonlinear system y(x) = 0 is to replace
the estimated solution x i with the improved estimate x i+i = x, +8x i . where 6x i is the
solution to the linear system (dy/dx) x, jxi = —y(x,), and (cly I dx),c, is the Jacobian
matrix of y(x) evaluated at x i . This method is quadratically convergent so long as
the Jacobian does not vanish at the root and the initial estimate is sufficiently close
to the root.

In expression (9), S , I, bs , and Zo are not functions of v and i, so differentiating
with respect to the components of v results in the following equation for the correction
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(5 v to an estimated v:

(Z0 (/ + S) —di + (i S)
dv

When using (9) and (10) the elements of the source vector 13 9 representing ac signals
must be multiplied by O.,- to convert them to peak amplitudes from their RMS values,
since these are the relevant quantities in the Tucker theory. The final values of the
harmonic currents i and voltages v should be divided by v ir2, if their RMS values are
required. One must be careful not to apply these corrections to the dc bias values.

The harmonic balance routine will seek a solution to the nonlinear system (9) by
first calculating the linear network characteristics S and bs . After assuming an ini-
tial trial voltage vector v, the routine must update v by finding the Jacobian matrix
dildv and then solving (10) for the corrections .5v. The process is repeated until the
corrections become sufficiently small. The actual implementation of a satisfactory
Newton-Raphson algorithm is somewhat more complicated; it must continually mon-
itor the convergence behavior of the iterations and be prepared to adjust (5v. Potential
difficulties include the algorithm's behavior near saddle points or local extrema of the
right hand side of (10).

III. GENERATING THE JACOBIAN MATRIX

A. Basic Properties

In order to use (10) we must form the Jacobian matrix dildv with elements
a/71/01/m

-n: ranging over all pairs of harmonics m and m' and SIS devices n and n'.
Since the currents through one device n do not directly depend on the voltages across
a different device n', where n n', we know immediately that:

8n,n , ai davz, (11)

Unfortunately, because the A, ,, defined in (6) are not analytic, it is impossible to
define a single complex derivative aim" al/mi. The solution chosen here is to define
the Jacobian matrix in terms of separate derivatives of the real part and imaginary
part of each harmonic current 1m with respect to the real part and imaginary part
of each harmonic voltage Vm , (recall that harmonic number 0 denotes the dc bias
component). These four derivatives are real, not complex, and will be symbolized by:

aim; , r aim ;i
av;„,, Wm, ;r aVm' ;i

where the "; r" and ": i" suffixes denote the real and imaginary parts, respectively,
of the harmonic voltages or currents.

As for harmonic 0 (the de bias) the imaginary parts Jo and Vo will be assumed to
be identically zero. In order to keep the resulting Jacobian from becoming singular.

(12)
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we set the derivatives as follows:

aV
M,
 r altm 1/0 ; 51' : z

a aIO:r aio 
= 0 • = 1 (1:3)

avo" ; r aVO : 31/0 : i

In the actual implementation we apply (13) not to dildv in (10), but to the entire
matrix multiplying (5v, saving a little time. Another alternative to (13). of course.
would simply be to eliminate the imaginary part of the dc bias current and voltage
from the equations.

B. Relation to the Small Signal Admittance Matrix

When the SIS junction is used as a heterodyne mixer, the infinitesimal signal voltage
and current response can be expressed using the following Fourier expansions:

0 m > 0

M-= - 771= -oc,

where W(m) = MiWO , and wif is the IF output frequency. Note that parentheses
are used with the harmonic index 772 since it takes on negative values as well as
nonnegative in these expressions. The infinitesimal sideband currents and voltages are
linearly related through the small signal RF conversion admittance matrix, Y(m.,,):

00

JI(m) EY(m.n.c)(51/imi) (15)
= -co

Clearly this is the case if and only if

(16)(m ,, m 1 ) = a vim i)

In the limit of zero IF frequency, w(m) = mwo, and (14) becomes an alternate form of
the harmonic expansions in (1). The relation expressed in (16) pro-vides the connection
between )2(7mm!) and the derivatives in (12).

Equating the expansions (1) and (14) we find the relations between the coefficients
in the alternate expansions for i(t):

= 1(0) ; = i(m) , 772 > 0 (17)

with a similar relation for the harmonic voltages. Note that 1 (0) has been arbitrarily
chosen to be real with no loss of generality in (14). since CA: if = O.

Consider the real and imaginary parts of hn , for in > 0, using (17):

/in /in , 772 > 0

Im r (I (m) + (_m) r(m) F(''_m)) /2 (18)

Im:i (1 (m) — (_m) — P(,m ) r(c_m)) /2j
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Using these

dI, =

expressions and the similar ones for the Vm , we can differentiate 1):

dim , + j dim; i rn > 0

L,
, ,r + i 777, , 2 d /7 -m.' ; r + (.2., ' r + 3 , . a

i
m , : i

s
x')-c-, Wm,, al- .• a im . . a im . i \

ni t =0 DIZm' ; r aymi ; r UV mi . • al/mi,i)

( aim: . . a Im, : ,\ 7\ avo;, + 3 •a vo;r j aV(o)

1 
C

-
r .  a Im:t 

5
-
 2— + 3

av,, r av-772 , :rm.'=1

•a / ; r 2 

3 AT AT -
UV m

f
: j UVmIj J

aIm,:r , . aim „	• aim : r aim:, 
+ + 3 ' ,

al
/
rni:r 

-t- 3 avn, ; r avm, .i avm , . •
(a/772: r . aim:, .a/m,r aim:i 

+ _ + 3  + 3 . ,. . '
a l/

m
i : r av-m , : r avny :„: avny , •

aim m z • a rn ; r aim z
	+ 3  3 -

• avm,:r 	at/rm, ; r avrn,.

where we've made use of the fact that Vo" = is real.
Performing a similar expansion starting from (17) and using (15) and (16),

di, diem) + . 172 > 0

E(Y( mm' ) dVi mi ) 37- 7.1 ainv))

(Y(m.o) 3
7
( d1/(0)

▪ E y(x_m,,,) 
(7719

rrif = 1

+ + , (-- ) (20)

Finally consider 1.
0 = 1(0) (real), making use of (13):

d.10 dI0 r

a i0. r d1/0
UVO:r

r JT
-vo r (0)

1 f ôI0:7- . DI
—
2 2---d ,m'=1 av •m 

r

(

oo A T,Ao:r
dl/m

.
 , • r + 

pi° . r
'

m , . 1 ay,/ : r ' Olimi.
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and

di° 	di(o) diro) (d

) ( o.o)di (o)
1
9 (Yam') ai

rr-,/ =

+ Y(0 , -m o
) (11:Fm,

3:7( O. ) Trz. )-

3;1-1‘-r7-,1') dl ;7- )

Comparing (19) to (22) we find the following relations between the derivatives
needed for the Jacobian matrix and the small signal admittance matrix Y ,) ( when

= 0):
( - rn in' ) = 3/Trr,,rni

a/O:r
• = )(0,0)81-/

0 r

DIO:r 01();r
yo.Re }Om') avn , .

aim = 9 Im Yort,o)
aim; r 9 Re y(m,,o)

017 0,OV0,

93

(94

(23;

(26)

where m > 0 and rn! > 0 in (23) to (28).

C. Calculating the Small Signal Admittance Matrix

The small signal admittance matrix );(7„ .m, 1 must be calculated in order to perform
the RF conversion analysis of a heterodyne receiver. Tucker's theory provides the
following expressions for );(m., , ) in the case of an SIS mixer:

Y(m,m i ) =

2( '14
kliph) -1(1/b (k - mi)Vph

,h )

— ( Vo (k rn)Vph + 14 f ) + r(1/7
0 (k m — rni)Vph)] (29)

where V; = (h/e),..cif is the photon voltage of the IF frequency
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For w, f = 0. expression (29) becomes:

Y(m.mf �0)
cc

277111Ph
C [I(Vo VI -ph) — I(tio 7721)Y,h)

— I'(Vo (k m)li
ph) 	(Vo (k rn Trzi ) 17P 

h (:30)

Y(rr,,O)

9
 Ecc- [rn + kVi- 	) — (k m)Vph)]k+rn –Tr,' 0 ph 0 s (31)

The primes ( i ) on the currents in (31) denote derivatives of the I-V characteristic
curves (figure 2) with respect to voltage. A little effort with index manipulation in
(30) and (31) would suffice to show that these expressions satisfy (23). Now we have
all the information needed to perform the Newton-Raphson iteration (10).

D. Final Considerations

Once routines to calculate i(v) and the );( m., , ) have been developed, along with
more traditional circuit routines to determine the linear embedding network behav-
iors S and b s . the harmonic balance routine may be implemented. Expressions (9)
and (10) define the complex vector function of v and its Jacobian which are used by
the Newton-Raphson solver to perform the harmonic balance. The vectors and ma-
trices involved are potentially large, having dimension N ni ( m,,,, + 1), where ni is
the number of SIS junctions in the circuit and ni max is the number of harmonics to be
included in the analysis: each element must hold a pair of real numbers to represent
the complex quantities involved.

The potentially most time-consuming calculation in these expressions is the matrix
multiplication (. S)(di. dv) in the formula for the Jacobian. This calculation is not
as bad as it seems. however. because the matrices involved are block-diagonal. This
characteristic was previously described for di/ dv in expression (11). Consider the
elements of the matrices ( I = $). Since the embedding network is linear, it cannot
connect signals Nvith different frequencies: therefore the elements of S must look like
(using the same index notation as in (11)):

cnn A- cn.ni
' 7.71-m1 m

The elements of the matrix product in (10) are therefore:

017'7,11
= Sr') ,

and no summing over an index is required to perform the multiplication.

(3:3)
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I v. IMPLEMENTATION AND RESULTS

Routines to perform the calculations outlined above have been implemented and
included in an extensive C++ class library (named -Super.Mix" ) used to model SIS
mixers and receivers. This library includes a complete complex linear algebra capa-
bility as well as a multiparameter optimizer and is described in more detail in IT:. It
can perform gain and noise analyses of superconducting and conventional circuitry of
arbitrary complexity, including superconducting surface impedance calculations and
modeling of HEMT amplifiers. The source code of this library will he made freely
available. It compiles under the Free Software Foundation's freely available compiler
g++ and has been tested on Linux (Pentium) and Sun CltraSparc platforms.

Twin-slot, two-junction mixers as described in [8] have been modeled using Super-
Mix. A schematic block diagram of the circuit model is illustrated in figure 4. Not
shown is the dc bias circuit for the two junctions. which is modeled as an ideal voltage
source (battery). Note that the entire RF superconducting circuitry is included in the
model, including both SIS junctions. To illustrate some of the capabilities of the li-
brary interface, we have included figure 5, which shows the short C++ file which fully
specifies the physical design parameters of the twin-slot circuitry to SuperMix. The
parameter objects declared in the file are given initial values which may be modified
by the program. Because the circuit parameters are modifiable. SuperMix's optimizer
may be used to adjust them during program execution. The illustrated specification
file is for a "device 63", which is a mixer designed for operation in the 600 to 700
GHz range and which is described in detail in [8]. The SIS I-V characteristics used
are those shown in figure 2; SuperMix scales these normalized curves using the SIS
parameter data provided in the specification file.

Figure 6 shows various dc current-voltage characteristic curves predicted by the
model. The pumped curves show the effect of varying local oscillator (LO) frequency
around the design frequency of 650 GHz: the LO power at the antenna was held
constant at 200 nW. In this and subsequent figures the currents shown are the total
bias currents obtained by summing the currents from each of the two SIS junctions.
The values of these currents are found in elements of i(v) following a successful
harmonic balance calculation. Even though each harmonic balance considered both
junctions and three harmonic frequencies, the Newton-Raphson technique required
an average of only four iterations to converge to about 0.1% or better accuracy. On
average, a full harmonic balance took approximately 0.015 seconds to complete using
a 33:3 Mhz Sun Ultra 10 workstation (6.3 seconds total execution time: :324 harmonic
balances were required).

Figure 7 shows hot and cold load (RF background temperature) total IF output
power into 100 MHz bandwidth centered at 6 GHz. The LO power was set to 200 nW
at the antenna, with a frequency of 650 GHz. As with the other simulations shown.
the LO fundamental frequency plus two harmonics were included in each harmonic
balance and subsequent mixer analysis. The noise effects of the associated optics
and IF stage were not included in the figure 7 analysis, although SuperMix is fully
capable of including their effects as well. The curves were obtained by performing
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Fig. 4. Schematic block diagram of the twin-slot, two-junction mixer circuit used for the examples.
Each labeled block is a circuit element. Several of the labels correspond to the names used in
the SuperMix specification file shown in figure 5 and represent superconducting transmission
line elements. The splitter is an ideal power splitter which is used to feed the RF and LO signals
equally to the two slot antennas.

two complete harmonic balances (for the unpumped and pumped conditions) and two
complete RF conversion analyses. including conversion gain and noise calculations;
at each of Si bias points. The total execution time was under 10 seconds, of which
approximately 1.3 seconds were required for initialization (reading data files and
building interpolation tables). again on a 333 Mhz Sun Ultra 10 workstation.

As a final example. figure 8 compares a calculated Fourier-Transform Spectrometer
(FTS) response with a measured response for a device 63 twin-slot mixer. The FTS
technique is described in detail in [8]. FTS "response" is defined as the change
in mixer bias current in response to a large change in the RF background source
temperature as a function of RF frequency, normalized to arbitrary units in which
the peak response is set to approximately unity. There is no separate local oscillator
source: the back ground RF thermal energy serves as a very weak local oscillator
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// 63 Device specification file
// 2/1/99 FRR

// The superconductors used:
const sc_material & GP_MATERIAL = nb;
const sc_material Sc TOP_MATERIAL = nb;

// niobium ground plane material
// niobium top strip material

// SIS junction parameters
parameter RNA = 19.9*Ohm*Micron*Micron; // normal resistance - area product
parameter SCAP = 85.0*fFarad/Micron/Micron; // specific capacitance (per area)
parameter AREA = 1.3*1.3*Micron*Micron; // effective junction area
parameter VGA? = 2.8*mVolt; // SIS gap voltage
parameter VBIAS = 2.4*mVolt; // SIS bias voltage
const char * const IDC_FILE = "72_idc.dat"; // DC IV characteristic (normalized to Vgap and Rn)
const char * const IKK_FILE = "72_ikk.dat"; // Kramers-Kronig transform of the DC IV curve

// layer thicknesses:
parameter GP_THICKNESS = 2000.*Angstrom;
parameter TOP_THICKNESS = 2000.*Angstrom;
parameter MS_THICKNESS = 4000.*Angstrom;
parameter TUNE_THICKNESS = 2000.*Angstrom;

// ground plane
// top strip
// SiO layer generally
// SiO in tuning inductor

// Microstrip dimensions (width,length)
wl TR_1 = { 2.0*Micron, 37.7*Micron };
wl TR_2 = { 4.5*Micron, 41.1*Micron };
wl MS_S = { 2.0*Micron, 2.5*Micron I;
wl IF_1 = { 2.0*Micron, 44.0*Micron I;
wl IF_2 = { 10.0*Micron, 41.*Micron };
wl IF_3 = { 10.0*Micron, 1.0*Micron };
wl TUNE = { 5.0*Micron, 9.8*Micron };
wl TUN2 = { 5.0*Micron, 2.5*Micron };

// 90 degree radial stub dimensions:
parameter STUB_R = 36.0*Micron;
parameter STUB_L = 2.5*Micron;

(each entry is a parameter):
// transformer section 1
// transformer section 2
// bit between radial stub and TR_1
// if section 1 (nearest radial stub)
// if section 2
// if section 3 (nearest IF output)
// full length of tuning inductor
// tuning inductor between transformer and SIS

// radial stub radius
// length of strip from antenna into stub

// Local Oscillator and IF output parameters:
parameter LO_POWER = 50*Nano*Watt; // the LO power at the antenna
parameter LO_FREQ = 650.0*GHz; // the LO frequency
parameter LO_TEMP = 0.0*Kelvin; // thermal noise source temperature at input
parameter IF_FREQ = 6*GHz; // the IF frequency
complex_parameter IF_TERM = complex(50*Ohm);// the input impedance of the IF amplifier

// The antenna impedance information (these cannot change during runtime):
const char * const ANT_FILE = "Zslot.750"; // antenna impedance file name
const double ANT_FILE_FREQ = 750.0*GHz; // antenna center frequency used in the file data
const double ANT_TUNE_FREQ = 650.0*GHz; // the actual antenna design center frequency

// Mixer calculations:
int HARMONICS = 3;

// The receiver temperature (remains constant during runtime):
const double TEMPERATURE = 4.0*Kelvin;

Fig. 5. SuperMix specification file for the twin-slot mixer shown in figure 4. Nearly all of the
numerical values may be modified as required during program execution: this file provides initial
or default values.
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Fig. 6. Calculated pumped IV curves for a 650 GHz twin-slot, two-junction mixer. LO power 200
nW. The unpumped curve is also shown. The sum of the bias currents for the two junctions
was calculated every 0.05 mV for a total of 324 points for the four curves. Each point required
a full harmonic balance using 3 harmonics. The total execution time was 6.3 seconds on a 333
MHz Sun Ultra 10.

Fig. 7. Calculated hot and cold load IF power curves into a 200 MHz IF bandwidth centered at 6
GHz for a 6:50 GHz twin-slot mixer. LO power 200 nW. The IV curves are also shown. Only the
superconducting mixer circuitry is modeled: noise contributions of the optics and IF amplifier
are not included. Required 162 complete harmonic balance calculations and 162 mixer gain and
noise analyses: execution time was under 10 seconds on a 333 MHz Sun Ultra 10.

3 4
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\

- Measured

Fig. 8. Calculated and measured FTS response curves for a 650 GHz twin-slot mixer (device 63).
Bias voltage was 2.0 mV. 802 harmonic balances were required to calculate the curve shown;
execution time was 11.7 seconds. The text describes how the simulated response was calculated;
at the peak, the calculated change in bias current is only 3 parts in 106.

which slightly pumps the junctions in the mixer. To model this measurement using
SuperMix, the program balances the mixer for a very small LO power (0.1 picoWatt
was used to generate figure S); it then rebalances the mixer with the LO source
turned off. The resultant change in the total calculated dc bias current drawn by the
two junctions is then output as a function of LO frequency. The calculated current
differences in the simulation are extremely small--only 31 picoAmps at the peak of
the curve (3 parts in 10 6). The fidelity of the result demonstrates the precision of
the harmonic balance calculations. The curve shown was calculated every 2 MHz,
requiring 802 total harmonic balances. Execution time was 11.7 seconds, again giving
0.015 seconds per harmonic balance. The similarity of the calculated and measured
responses is evident in the figure 8; it is important to note that no adjustment of free
parameters was done to the mixer model in order to optimize the match of the curves;
the parameters shown in figure 5 were the values used by the simulation, except that
the bias voltage was set to 2.0 mV to match that used for the measured response.
The only adjustment was to uniformly scale the calculated bias current responses
(following the program run) to match the scaling used by the measured data.
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