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ABSTRACT.

In this paper we present a novel triangular, multiple-beam diplexer. Its properties
are compared with existing square diplexers. Our triangular folded Fabry-Perot (FFP)
diplexer is a ring-interferometer consisting of two partially-transparent mesh filters and a
slightly concave mirror. The reflector is tunable in position and the three components are
mounted in the shape of a triangle with 60-degree angles. The purpose of the diplexer is
to superimpose a signal and a local oscillator (LO) beam with frequencies of order 1 THz
and a difference frequency of order 10 GHz.

INTRODUCTION.

The operation of a THz heterodyne receiver in space requires a large IF
bandwidth in order to increase the speed of line surveys and to allow observation of
broad weak line emission from distant galaxies. For example the HIFI instrument on
board of FIRST will have a 4 GHz IF bandwidth for RF frequencies ranging from 480
GHz to over 2.5 THz [1].

For efficient coupling of the signal and the local oscillator (LO) power to the
mixer one often uses diplexers to combine the signal and LO beams. A diplexer is an
interferometer allowing nearly loss-less superposition of two beams of different
frequency. The optical path length in the interferometer, Lo pt, is related to the difference,
or intermediate frequency IF by:

Lopt = c / (2 IF) (1)

The usual diplexer in heterodyne receivers is a dual-beam, polarizing Martin-
Puplett [2] interferometer, (MP). However, its transmission is sinusoidal as a function of
frequency, which makes this interferometer less suitable for wide IF bandwidths. Wide
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bandwidths have been achieved with multiple-beam interferometers of the Fabry-Perot
type in a folded version, originally proposed by Gustincic [3]. General properties of the
mentioned interferometers are described in ref [4].

In table I we give the calculated efficiency (i.e. transmission) of a loss-less MP
diplexer in the case of a 6 and a 10 GHz IF center frequency and 4 GHz bandwidth. Also
given is the efficiency (i.e. reflection) of a loss-less FFP diplexer for the same IF
frequencies and for mirror reflectivities of 67% and 77%, i.e. a finesse of 7.8 and 12.0,
respectively.

Diplexer type Efficiency @ IF
center frequency

Efficiency @ IF
center freq. ± 2 GHz

Martin-Puplett @ IF= 6 GHz 1.0 0.75
Idem @ LF=10 GHz 1.0 0.90

Fabry-Perot, R=0.67 @ IF= 6 GHz 0.961 0.949
Idem, @ IF=10 GHz 0.961 0.957

Fabry-Perot, R=0.77 @ IF= 6 GHz 0.983 0.978
Idem, @ LF=10 GHz 0.983 0.981

Table I: Calculated efficiency of loss-less diplexers with 4 GHz bandwidth.

In practice diplexers are never loss-less. Some sources of loss can be:
- coupling losses because of small diplexer size as compared to QO beam size,

scattering or absorption losses at wire grids or mesh filters,
coupling losses due to imperfect re-imaging of multiple beams,

- imperfect angular alignment of diplexers' optical components.

Design aspects of our triangular diplexer will be discussed in this paper against
the background of the mentioned loss mechanisms. Some measurements illustrate its
performance.

DESIGN AND QUASI-OPTICAL PROPERTIES.

Figure 1 gives a schematic diagram of the triangular FFP. The signal beam is
reflected upon incidence on the first mesh filter, while the LO is transmitted by the FFP
after incidence on the other mesh. Note that the reflector and the meshes have a width W
and that the roundtrip path of the multiple reflected beams is:

Lopt = 3 Vvir 2 (2)

The curvature of the reflector is such that it re-images the minimum beam waist, wO, of
the quasi-optical beams at a distance zf from the center of the mirror, where

= 3 \V ' 4 (3)
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Note however that this does not mean that the focal distance of the mirror is z f- , except in
the case that the FFP is used in the far-field region of the propagating beams. We will
come back to this later on.

Figure 2 is a graph of the calculated reflection of LO and signal beams for an FFP
with R=0.67. The figure illustrates the case that IF is 2/3 of the center IF frequency.
representing a bandwidth of one octave.

Propagation of a wavefront with beam radius 1,v(z) at distance z from the
(minimum) waist w0 goes as:

w(z)2 = w02 (1 ± z2/zR2) (4)

, where zR = w02 / is the confocal or Rayleigh distance, see ref [4], eq. (2.2 lb), and
w0 is the beam waist radius. If we require that the mirror must have a projected size
sufficiently large for 4 beam radii, we have approximately:

W = 4 w(zf) 2 / \I3 (5)

Combination of eqs. (5) and (4) with z = z f (3) gives:

(w0)4 _ 3 w2 (w0)2 / 64 + w2 A,2 / (16 It )2 = 0 (6)

Solving this equation for w0 gives the two values of w0 for the extreme cases of near-
and the far-field. The minimum value of the expression yields the size of w0 for the case
of confocal imaging.

As an example we take IF = 6 GHz and f = 800 GHz, i.e.  = 0.375 mm. This
yields Lcpt = 25 mm, W = 16.67 mm and z f = 12.5 mm. In table II we summarize the
values for w0 and w(zf) for the near-field, confocal field and the far-field. This is further
illustrated in figure 3, where the propagating beam waists at — w and —w are drawn.

w0 (mm) w(zf) (mm) zR (mm)
Near-field 3.58 3.61 107.6
Confocal 1.22 1.73 12.5
Far-field 0.42 3.61 1.45

Table II: Quasi-optical parameters of a triangular FFP with IF = 6 GHz and f= 800 GHz.

From table II and figure 3 it can be seen that in the confocal case the beam does
not use the corners of the diplexer and allows ample space for mechanical support of the
mesh filters. In the near-field and far-field however there is no space for mechanical
support, making these extreme cases not realistic for beam diameters of 4 waists. In other
words the efficiency of the diplexer will be reduced by truncation of the beams.

336



Tenth International Symposium on Space Terahertz Technology, Charlottesville, March 1999

The question is whether there will always be a confocal situation possible. The
answer is that this depends on frequency: there will be a lowest frequency where 4 beam
waists are just transmitted by the diplexer. The minimum frequency is determined by
calculating the value of X for which eq. (6) has a single root. This gives:

f
min = 96 IF / TC (7)

For IF = 6 GHz we find 183 GHz as the minimum frequency of a triangular diplexer.
This is much lower than the value of 489 GHz, which we find for an equivalent square
diplexer.

MIRROR CURVATURE.

The radius of curvature, R(z), of a Gaussian beam propagating along the z axis is
described by the following equation:

R(z) = z (1 zR2 1 z2) (8)

, where zR is the confocal distance as before. The mirror of the diplexer should have an
elliptical shape in order to match the Gaussian beam wavefront, see ref [5]. For a
triangular diplexer the angle of incidence is 30

0
, which means that the semi-major axis of

the ellipse is a = Rf = R(ZO, where Rf is the radius of curvature of the wavefront when it
hits the mirror. This is further illustrated in figure 4. Note that R f is always larger than zf,
except in the far-field, where Rf is approaching zf because z >> zR. The effective radii of
curvature of the elliptical minor in the horizontal and vertical direction are:

Rho, = 2 Rf and Rvei. = Rf -\13 /2 (9)

For example in the earlier case with IF = 6 GHz and f = 800 GHz we find the
following values:

Confocal
distance,
zR (mm)

Wavefront radius
of curvature,

Rf (mm)

Horizontal radius
of ellipse,
Rhor (mm)

Vertical radius
of ellipse,

Rvert (mm)
Near-field 107.6 939.3 1085 813
Confocal 12.5 25 28.88 21.65
Far-field 1.45 12.67 14.63 10.97 _

Table III: Properties of the elliptical mirror in a triangular diplexer for IF = 6 GHz and f =
800 GHz.
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POLARIZATION.

The resonant frequencies in a triangular diplexer are polarization dependent
because of the odd number of reflections. This is not a problem in general, since the LO
and signal beams need to have identical polarizations (linear in horizontal or vertical
direction) anyway. For the LO beam it means that the cross-polarized component of the
beam is not transmitted by the triangular diplexer.

BEAM SYMMETRY.

Off-axis beams propagate through the triangular FFP in an asymmetric way. This
is illustrated in figure 5, which gives the trajectories for the central beam and one off-axis
beam. After multiple reflections inside the interferometer the off-axis beam propagates
alternately above and below the central beam. For symmetric beam modes this is not a
problem, since the round-trip optical path is independent on the amount of offset.
However, asymmetric modes with 180° phase difference between the upper and lower
halves of their mode pattern will be attenuated by this phenomenon.

COMPARISON BETWEEN TRIANGULAR AND SQUARE FFPs.

In the preceding sections we have derived equations for triangular FFPs. Similar
equations have been derived for square FFPs (ref [5]) and can be derived for modified
versions of triangular FFPs.

In table IV, at the end of this paper, we give parameters of four different FFPs:
1. a square FFP with a single curved mirror,
2. the same as 1, but with 2 curved mirrors,
3. the triangular FFP as described in this paper,
4. a diamond FFP with 60

0
 top angle.

Relevant parameters have been mentioned in the preceding chapters. To quantify the
various parameters in the table we calculated the values for the case IF=6 GHz and f=800
GHz, which may be applicable to the RIFT instrument of FIRST.

In order to get a feel of the optical aperture of the beams we added to the table the
so-called F-ratio. This parameter, F/D, corresponds to an 11 dB edge taper, i.e. we
assumed an "optical diameter", D, for which the beam waist radius in the far field is w =
0.889 D/2. This applies e.g. to the quasi-optical beam at the secondary mirror of the
FIRST telescope.

From table IV we can see that the triangular FFP has the lowest fr,,,, and
consequently the widest range of possible F/D ratios. The diamond shaped FFP can be
regarded as a deformed square FFP with the advantage that the focal distance, z f, of the
mirrors is more than 4 times larger. This means that the mirror in the diamond FFP will

338



Tenth International Symposium on Space Terahertz Technology, Charlottesville, March 1999

be much less strongly curved than in the square case. Moreover, the resonances of the
diamond FFP are independent of polarization, in contrast to the triangle FFP.

The square FFP with a single curved mirror offers a minimum of flexibility for
the chosen frequency: in its confocal case we have w0 = 1.22 mm, which means that 4
beam radii at the mirror (4 w0 Ni 2 = 6.9 mm) is larger than the projected mirror size (W .q2
= 5.72 mm). This is equivalent to saying that only 3.6 beam radii fit instead of the desired
4 beam radii.

ALTERNATIVE CONFIGURATIONS.

Many alternative configurations of FFPs can be thought of. However, it is not
possible to combine any set of FFPs like with a box of bricks, because the images of
multiple beams must be coinciding.

We want to mention one version consisting of two triangles in series: see figure 6.
Effectively this is a 3-mirror FFP, discussed in the literature [6] and actually tested at 490
Gliz [7, 8]. One advantage of this configuration is that the transmission peak for the LO
becomes wider without reducing the reflection of the signal. Thus the required tuning
accuracy is reduced. Another advantage is that the two outer reflectors can have a much-
reduced reflectivity, R1 = R3 = 0.243, so that presumably scattering and/or absorption
losses in the 2 outer grids will be reduced. Moreover, the asymmetry for off-axis beams,
as was illustrated in figure 5 for a single triangular FFP, is now removed.

However, disadvantages of the setup of figure 5 are as follows. The 2 triangles
need to have identical optical pathlengths and the tuning mechanism must maintain this
equality. Also, in this design the difference in resonances between the two linear
polarizations still exists.

EXPERIMENTAL RESULTS.

The use of a square FFP was recently reported [9] at IF = 6 GHz and f=640 GHz.
Another application of square FFPs can be found in ref [10], describing the heterodyne
instrument in U.kRS-MLS, where an FFP is used for frequencies of 205 and 268 GHz.

At SRON we have built a prototype triangular FFP using 2 inductive, nickel mesh
filters of 150 lines/inch providing a reflectivity of about 73% and a plane reference
reflector. The measured reflection and transmission as a function of mirror position are
given in figure 7 for a frequency of about 345 GHz.

The maenitude of scattering and absorption losses in mesh filters are not well
known, but will certainly be present. In this respect further tests on triangular FFPs need
to be performed in the future.
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CONCLUSIONS.

THz heterodyne receivers in space require the use of diplexers in order to
efficiently couple the available LO power to the mixer. Application of a folded Fabry-
Perot (FFP) diplexer is especially useful in heterodyne receivers requiring a wide IF
bandwidth for a relatively low IF center frequency.

In this paper we described the properties of an FFP with triangular cross-section.
The main advantage over the usual FFP with square cross-section is the larger size of the
triangle, allowing accommodation of a much wider range of different beam sizes. We
have demonstrated the feasibility with a prototype triangular FFP.
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Square Square 2 Triangle Diamond

Square 1 Square 2 Triangle Diamond

Size W W1 =
c / (4\12 IF)

W2 = W1 W3 =
c / (3 IF)

W4 =
c / (6 IF)

Optical Path Lopt 2 W1 -\i2 2 W2 -\i2
—

3 W3 / 2 3 W4

Focal distance z f W1 -\i2 W2 / -\,/2 3 W3 /4 5 W4 / 4

Minimum freq. min 512 IF / it 256 IF / it 96 IF / it 320 IF / It

Values for IF=6 GHz
and f= 800 GHz

W 8.84 mm 8.84 mm 16.67 mm 8.33 mm

Zf 4.42 mm 2.21 mm 12.50 mm 10.41 mm

f min 978 GHz 489 GHz 184 GHz 612 GHz

w0 for Near field - 1.48 mm 3.58 mm 1.64 mm

wO for Confocal (1.22 mm) * 0.86 mm 1.22 mm 1.12 mm

w0 for Far field - 0.51 mm 0.42 mm 0.76 mrn

F/D for beam with
1 1 dB edge taper.

F/D for Near field - 5.51 13.35 6.09

F/D for Confocal - 3.22 4.55 4.15

F/D for Far field - 1.88 1.55 2.83

Table IV: Summary of properties of different types of folded Fabry-Perot diplexers. The
*symbol indicates that the design frequency is lower than the minimum frequency.
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Figure 1: Schematic diagram of a triangular FFP.
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Figure 2: Calculated reflection of the signal beam and transmission of LO beam in a FFP with
R ----- 0.67. For comparison we also give the transmission of a Martin Puplett interferometer.
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Figure 3: Quasi-optical beam trajectories in a triangular FFP for IF = 6 GHz and f ---- 800 GHz.
The pictures are an illustration of the values in Table II.
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Figure 4a: Geometry of the elliptical reflector in a triangular FFP with 0, = 30°.

Figure 4b: Geometry of the elliptical reflector in a square FFP with. 0, = 45°.
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Figure 5: Trajectories of off-axis beams in a triangular FFP.
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: - eure 6: Configuration with 2 triangular FFPs in series. Transmission is calculated for R1 =
= 0.243 and R2 =0.664.
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Figure 7: Transmission & reflection measured with prototype of triangular FFP at f 345 GHz.
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