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Abstract

In previous work we established a general procedure for calculating the input impedances
of one-sided microstrip probes in waveguide. The one-sided configuration, where the
probe extends only part way across the waveguide, contrasts with the two-sided configu-
ration, where the probe extends the whole way across the waveguide. We demonstrated
that because of the way in which the different current distributions couple to the waveg-
uide modes, the one-sided probe is intrinsically lower impedance and more broadband
than the two-sided probe. This observation has important consequences for the design
of THz SIS waveguide mixers.

Previously, we had to make an approximation when evaluating the integral for the
complex radiated power, and this led to a corresponding approximation in the final
expression for the input impedance. We have now evaluated this integral rigorously,
and we have shown that the original approximation breaks down to third order in the
width of the probe, an effect we have seen experimentally. In this paper, we review
the technique for calculating the impedances of one-sided microstrip probes, and we
present a more accurate expression based on a rigorous analytical evaluation of the
power integral. This expression is compared with complex impedances measured on a
scale model at 5GHz, and excellent agreement is found.

1 Introduction

The planar waveguide probe has become the standard way of coupling SIS tunnel junctions
to rectangular waveguides in conventional low-noise submillimetre-wave mixers. In the most
popular configuration, the tunnel junction is placed at the centre of a thin conducting strip
that extends the whole of the way across the waveguide [1]. This arrangement has the
disadvantage that it is is not possible to obtain low values of input impedance (50 Q or
less) without reducing the height of the waveguide. This property is intrinsic to the “two-
sided” geometry, and is a consequence of the fact that the contributions from the evanescent
waveguide modes add up in parallel and influence the real part of the input impedance in
an complicated way. An alternative approach is to use a metallisation that extends only
part way across the waveguide: a “one-sided” probe. In this case, the contributions from
the waveguide modes add up in series, and only the propagating fundamental mode couples
to the resistive part of the input impedance. As a consequence, the input impedance is low,
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and does not exhibit the complicated frequency dependence of the two-sided arrangement.
The ease with which it is possible to couple low-impedance devices to one-sided probes in
full height waveguide has important consequences for the design of THz SIS mixers.

In a previous paper [2], we established a general procedure for calculating the input
impedances of one-sided microstrip probes in waveguide. The approach was based on the
reciprocity theorem and the spectral-domain method [3]. The main feature of the theory
is that the Fourier transforms of the current and field distributions are related—through
the spectral dyadic Green’s function—by an algebraic rather than an integral equation.
Moreover, the expression for the spectral Green’s function is much simpler and easier to
obtain than the space-domain version—especially for dielectrically-loaded waveguide. Orig-
inally, we had to make an approximation when evaluating the integral for the complex
radiated power, and this led to a corresponding approximation in the expression for the
input impedance. We have now evaluated this integral rigorously and have shown that
the original approximation was accurate to only second order in the width of the probe.
Indeed, the original expression was accurate for narrow probes only, an effect we had seen
experimentally.

In this paper, we present an accurate expression for the input impedance of one-sided
microstrip probes. The expression is based based on a rigorous analytical evaluation of
the power integral. The physical significance of the various terms in the final expression is
clear. Through this work we have found that a broadband match can be achieved by using
a radial probe. We describe how, by using the Fast Fourier Transform, the basic technique
can be extended to cover any geometry for which the current distribution is approximately
known.

2 Theoretical Analysis

In Fig. 1, we show the geometry of a microstrip probe in waveguide. The probe is assumed
to be fed by a current source I;,, which is connected between the base of the probe and
the wall of the waveguide. This source causes a potential difference V,; to be established,
through which the input impedance can defined:

Vab

Zin = — . 1

4 1)
Using the reciprocity theorem [4],[5], we can derive an expression for Vg in terms of the cur-
rent density on the surface of the probe J, and the tangential electric field in the waveguide
E.; in this way, we obtain

Zin = —52: / / / Eo(r)Jo(r)dV . 2)

When evaluating the above integral we assume that the current is distributed sinu-
soidally over the length of the probe. This assumption allows a great deal of simplification
and eventually leads to a closed-form solution for the input impedance. All of our detailed
experimental measurements show that this first-order guess at the current distribution gives
extremely accurate results. We therefore write

Jz(z,y,2) = Job(y — d)u(z) sink(z; — z) (3)
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Figure 1: A one-sided microstrip probe in waveguide
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for £ < z; and zero otherwise. u(z) describes the current density distribution across the
width of the probe. Previously, we used an expression of the form

u(z) = lz—z|<w, (4)

|

where w is the half width of the probe, to take into account the singularity that exists, in
the case of infinitely thin metallisation, at the edge of the strip. In this paper, we simply
assume that the current is constant across the width of the strip and goes to zero at the
edges: u(z) = 1 for |z — z;]| < w and zero otherwise. For all practical purposes, these two
current distributions are identical. Notice that we are assuming that the plane of the probe
lies in the E-plane of the waveguide. In a previous paper we proved analytically that the
input impedance is insensitive to the orientation of the probe. In the following treatment,
we shall neglect the transverse components of the current J, and the electric field E,.
Rigorous theoretical analyses of microstrip lines suggest strongly that this approximation,
which significantly simplifies the solution, is a good one for geometries of practical interest.

To apply the spectral-domain method to our problem, we first replace the current and
field in (2) by their Fourier transforms and apply Parseval’s theorem in two dimensions to

obtain
1 1 IR e 5
Zn=-smr 2. | ExlonBdRs"(an)ds, (5)
7(‘ I‘i‘n n=—oco ¥V~ X
where K z(an, B) is the two-dimensional Fourier transform of the current distribution. At
this stage, the boundary conditions at the top and bottom of the waveguide have effectively
been introduced by the method of images: forcing the Fourier parameter a to be discrete.
The input impedance can now be calculated by using the spectral-domain relationship
between the current and field distributions. Neglecting the transverse component of the
field and current we obtain

Em(anvﬂ’d) = é:z(anyﬁ;d)-Kz(an,ﬂ) (6)

where \ g
- a

Gzz(ayﬁyd) = o +ﬁ2 Z° + o2 +‘32
In the above equations G.(a,B,d) is the longitudinal component of the dyadic Green’s
function, evaluated at d. Z¢ and Z" are the Green’s functions associated with the LSE
and LSM modes and expressions for them may be found in several places [6]. We can, if
desired, take into account the effect of the supporting dielectric substrate simply by using
the appropriate Green’s function.

Substitution then gives

A (7)

1 1 I=® +oo _
Zo=—pgm 3 /_w &(an, B, d)

n n=-co

E(en,8)[ dB, (8)

where for convenience we have dropped the subscript on the Green'’s function.

To proceed with the analysis, we need the spectral domain dyadic Green’s function
for an empty waveguide and the Fourier transform of the current distribution. To derive
an expression for the Fourier-transformed current distribution we can use the method of
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images; that is to say we replaced the wall of the waveguide by a virtual probe. The virtual
probe is identical to the actual probe, but points in the opposite direction. We then find,

. 2k cos a,zj — cOs kzl} [’sin ,Bw]

Ke(an,B) = L"(kz -al) sin kz, [ Bw (9)
where boundary conditions require
nr
anp, = 'b— (10)
Substituting the current distribution into the expression for the impedance we find
Zo = -1 1= k2 [(cosanzhl — coskzy))? (11)
27b = ( az) sin kz,

[ danpa) [S‘“ﬁ“’} a3,

1 for n=0
2 otherwise °

To make further progress we need an expression for the spectral Green’s function of
empty waveguide. Using the immittance method, and assuming that the probe is at the
centre of the waveguide, we find

and §, =

]kRo

G(an,B,d) = o

k . 2
—7 tanhvd, (12)
where Ry is the impedance of free space, and « is the propagation constant in the transverse
direction.
Substituting the expression and using an expansion for the hyperbolic tangent, we arrive

at
—jkRo X = {(cos Ty — COS kzl)r
in = n 7 1
o BB 1 [l oo

sn? () /: 7 —1 ) {Sigiw] .

In the above equation, B, are the poles of G which satisfy the relation
b=k v al (19

where the propagation constant in the transverse direction is given by

Vm = (ﬂ) : (15)

a

For functions of this kind the value of the integral is determined by the poles of the
integrand. In the case of propagating modes, the §,,, are real, and the poles lie on the real
axis of the complex plane and contribute to the real part of the input impedance through
the singularities that exist when integrating along the real line from —o0 to +c0. In the case
of non-propagating modes, the poles lie on the imaginary line and contribute to the reactive
part of the input impedance—they do not produce singularities on the real line. Hence, we
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Figure 2: Poles of the power radiation integral in the complex plane. The poles on the real
line correspond to the propagating modes, and the poles on the imaginary line correspond
to the evanescent modes.

should perform the integrals for the propagating and none propagating modes separately.
For convenience, we shall assume that the size of the waveguide has been chosen so that
only the lowest-order mode can propagate. In this case, only B¢ is real. The situation is
shown in Fig. 2.

We can now use the residue theorem easily to get the input resistance of a free-standing
one-sided microstrip probe in waveguide:

R 2 [k:cl] [sinﬁmwr
Bin = abkf1o tan 2 Brow ) (16)

This expression is identical to our early one apart form the appearance of a sinc-squared

function rather than a Bessel function due to the different assumption about the transverse
current distribution.

In the case of the imaginary part, the integral in (14) becomes

kRo +oco +oc0 +oo
Xin e Xm an 17
A DESEPES o
1 1
Xpn = bprg—e———— 18
(= o2) B (18)
[cosanzl —coslc:z:l]2 . 2 (mr)
- sin® | —
sinkz,
2Bmnw — 1 + exp~2Bmnw
2(ﬁmnw)2

This equation is similar to the approximate expression for the reactive part of the input
impedance derived previously. Now, however, the sinc-squared function in Bmnw is replace
by the last term in square brackets of (23). For all real probes fBn,,w is less than unity.
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Expanding the sinc-squared function and the exponential function as power series and
comparing the two, we find that the third-order term in our original expression is incorrect;
an effect which we see experimentally when the width of the probe becomes large.

Clearly, the propagating mode does not make a contribution to the reactive part of the
input impedance. Also it can be seen that the contributions of the different modes to the
overall reactance change sign depending on whether or not £ > a,. In fact the contributions
are inductive for n = 0 and capacitive for n > 0. Hence, the overall input impedance can
be inductive or capacitive depending on the height of the waveguide and the frequency.

Finally, we would like to include the effect of a backshort in the analysis. There are
various ways in which this can be achieved. To a good approximation we can simply multiply
the Green’s function associated with the unterminated waveguide by the factor

7 =2jsinfz; exp —jfBz , (19)

where z; is the distance between the centre of the probe and the backshort. In addition, we
only include this factor in the integration over  when considering the propagating mode,
and we ignore the effect on the non-propagating modes. This assumption makes the integral
easy to evaluate and has physical justification because the backshort is usually sufficiently
far from the probe that the near-field effects of the non-propagating modes are negligible. It
is the reactive contribution of the lowest-order mode that can be used to cancel the reactive
effects of the non-propagating modes in order to tune the probe for any frequency.

Finally, the input impedance, Z;, = R;n + jXin, of a free-standing centred, one-sided
probe with backshort is given by

) 2Ro 2 [k:cl} [sinﬂmw]z .2
R, = @bk Brg tan 2 Brow sin (ﬁmh) (20)
Xin = Xio+ — Z Xmo + Z Z Xmn (21)
n=1m=1
Ro 2 [k:cl] [smﬂmw] .
= t —_— | —— 2 22
X0 abkBro an 2 Brow 5111( 51021) ( )
1 1
Ko = 02 = a2) B (23)
{cosan:c] — cos kzl]z . 9 <m7r)
- sin® | —
sin kzq 2
2Bmnw — 1 + exp ™ 2Pmnv
2 (ﬁ'rnﬂw)2

In all of these equations B, corresponds to |Bmnl, that is to say we use the modulus of the
propagation constant regardless of whether the mode is propagating or not.

In general, we see that for the microstrip probe the real part of the input impedance is
due solely to the lowest-order propagating mode; whereas for the two-sided probe, the real
part of the input impedance is influenced by a large number of high-order non-propagating
modes. This basic and important difference results in the one-sided probe being charac-
terised by a high value of input impedance whereas the microstrip probe is characterized
by a relatively low value of input impedance. In order to reduce the input impedance of
the two-sided probe, and also to increase the bandwidth, the height of the waveguide is
usually reduced by a factor of about 4, but this modification increases the conduction losses
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and the manufacturing complexity—both of which are extremely important if one wants to
manufacture components for the THz frequency range.

3 Experimental Results and Discussion

To investigate the above theory, we manufactured a scale model of a 400-500GHz mixer
block. The waveguide had dimensions of a=47mm and b=22mm, and the probe was fed
by an SMA connector which was inserted into the centre, (d = a/2), of the broad wall.
The central conductor of the SMA connector penetrated 0.5mm into the waveguide and
a copper-foil probe was soldered to the end. A major advantage of this arrangement is
that a short circuit can be applied at the wall of the waveguide in order to establish a well-
defined reference plane for the impedance measurements. It is substantially more difficult to
do well-calibrated impedance measurements on a two-sided probe. In order to separate out
the intrinsic behaviour of the probe from the behaviour of the probe-backshort combination,
we performed measurements on a waveguide that was terminated by two matched loads.
The real and imaginary parts of the input impedance were then measured by using a Vector
Network Analyser.

In Fig. 3 we show the input impedance of a doubly-matched probe as a function of
frequency. In this case the probe was 3mm wide, 2w. As can be seen, the measurements
are in excellent agreement with the theory over the whole range of frequencies tested. An
important observation is that the microstrip probe is essentially a low-impedance structure
with a typical input resistance in the range 10-100§2. This range is ideally suited to the
characteristic impedances of microstrip lines. From the point of view of SIS mixers, the
probe can be used for feeding SIS tunnel junctions over broad ranges of frequency without
the need to reduce the height of the waveguide.

We also notice in Fig. 3 that the agreement between theory an experiment is extremely
good apart from the resistive component of the longest probe. In fact, as the length of
the probe was increased further, so that it became significantly longer than half of the
waveguide height, the agreement between theory and experiment deteriorated even more.
We attribute the inability of our theory to predict the behavior of very long probes as being
due to the fact that the assumption of a one-term sinusoidal current distribution along the
length of the probe breaks down.

Because the derivation of the analytical result is rather involved, we have checked the
result by evaluating the integral in (11) numerically after substituting the expression for
the Green'’s function given by (12). This reactance has also been plotted in Fig. 3. Clearly,
the two are in agreement showing the integrity of our analytical expressions.

Overall, the above result shows that whereas the two-sided probe is essentially a high-
impedance structure, the one-sided probe is a low-impedance structure. Moreover, wide-
band operation can be obtained with a one-sided probe without the need to reduce the
height of the waveguide. In fact, wideband operation with low impedance levels can be ob-
tained with increased-height waveguide, and this implies that the upper frequency limit to
which waveguide mixers can be manufactured can be extended well into the THz frequency
range.

Because of the intrinsic advantages of the one-sided probe, we have started to look at
other shapes of metallisation. Shown in Fig. 4 is the input return loss of a radial probe on a
quartz substrate. The scale model had a waveguide size of 22X47mm, a radius of 9mm, and
a quartz substrate measuring 7X12.5mm. The probe had an opening angle of 90°, and the
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Figure 3: The input impedance of a doubly-matched microstrip probe as a function of
frequency for 2w =3mm. The waveguide measured 47mm X 22mm, and the probe was in the
centre of the waveguide. The dashed lines correspond to the experimental data, the dotted
lines to the numerical integration, and the solid lines to the analytical expressions.
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Figure 4: The input reflection coefficient, normalised to 3052, of the radial probe described
in the text. The frequency scale is that of the final device rather than the model.

backshort was at a distance of 10mim relative to the centre of the probe. This type of probe
has the remarkable property that its input impedance is purely real over a very wide range of
frequencies, and the resistance is low and can be adjusted merely by changing the length of
the probe. In order to investigate this design, and also the hammer-head arrangement used
by Kerr [7], theoretically, we have generalised our procedure to handle more complicated
current distributions. This has been achieved by evaluating the integral in (8) numerically
after calculating the current distribution by means of a Fast Fourier Transform. The results
for the rectangular probe described above are the same as the analytical expression derived
here, and we are now employing this method to study more complicated geometries.

4 Conclusions

We have derived an analytical expression for the input impedances of one-sided microstrip
probes in waveguide, where the integral for the complex radiated power has been evaluated
rigorously. We find that, compared to our previous work, where an approximation was
made, there is a small difference in the expression for the reactive contributions of the
evanescent waveguide modes. The error is, however, only third order in B,,w, where Bmn
is the modulus of the propagation constant and w the half-width of the probe.

We conclude that combined with our previous work, we have a rigorous way of calculating
the input impedances of one-sided microstrip probes. The supporting dielectric substrate
can be taken into account by using the appropriate Green’s function. It is important to
include the effect of the substrate in submillimetre-wave components, where the substrate
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can occupy a significant fraction of the waveguide.

By using a procedure based on the Fast Fourier Transform, we are now extending our
analysis to cover other probe geometries, and other current distributions, such as that of
the radial probe.
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