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Abstract

A distributed model for phonon-cooled superconductor hot electron bolometer (HEB)
mixers is given, which is based on solving the one-dimensional heat balance equation for
the electron temperature profile along the superconductor strip. In this model it is
assumed that the LO power is absorbed uniformly along the bridge but the DC power
absorption depends on the local resistivity and is thus not uniform. The electron
temperature dependence of the resistivity is assumed to be continuous and has a Fermi
form. These assumptions are used in setting up the non-linear heat balance equation,
which is solved numerically for the electron temperature profile along the bolometer
strip. Based on this profile the resistance of the device and the IV curves are calculated.
The IV curves are in excellent agreement with measurement results. Using a small signal
model the conversion gain of the mixer is obtained. The expressions for Johnson noise



and thermal fluctuation noise are derived. The calculated results are in close agreement
with measurements, provided that one of the parameters used is adjusted.

I. Introduction
Previously presented HEB models (the "point bolometer " or "standard" model) [1,2]
assume a uniform electron and phonon temperature along the superconductor strip.
Although these models are quite successful to explain many experimental results, some
discrepancies have been reported:

 It has been shown that the models are not capable of estimating the absorbed LO power
correctly when operating at frequencies above the quasiparticle bandgap [3]. Also
accurate measurements and calculations have shown such the "point bolometer" model
cannot explain the dependence of the measured conversion loss and the output noise
temperature on the bias voltage [4]. Nevertheless in order to optimize the device
performance for space applications, an accurate model is needed.

One-dimensional models have been developed assuming that the electron temperature
varies along the superconductor strip [5,6]. This assumption leads to different heating
efficiencies for the absorbed LO and DC power implying that the resistance change due
to a small change in absorbed LO power is not the same as that for absorbed DC power.
This is due to the fact that the DC power is only absorbed in the part of the strip where
the electron temperature is above the critical temperature whereas LO power absorption
is uniform.

In previous one-dimensional hot spot models [5,7] the temperature dependence of
resistivity is assumed to be a step function, which goes from zero to normal resistivity at
the critical temperature. This and other assumptions were made in order to make it
possible to obtain an analytical solution for the temperature profile. The main
disadvantage of this model is that while the temperature profile does not exceed the
critical temperature no hot spot is formed, and the model predicts zero resistance.
Consequently it is not possible to calculate reasonable IV curves at low bias voltages and
low LO powers. In practice the resistivity transition is smooth and measurements show
that the transition width is about 1.2 K [8]. In order to obtain complete IV curves it is
important to model the transition in a more realistic way.

The model presented here assumes that the temperature dependence of the resistivity,
although step like, is continuous and has a Fermi form, and the transition width can be
chosen as a variable (similar to a model for Nb diffusion cooled bolometers c.f. [9].).
This results in a non-linear heat balance equation, which is solved for the electron
temperature profile numerically. In section II the one-dimensional heat balance equation
and our large signal model are discussed. Section III describes the small signal model.
The noise is discussed in section IV. Section V explains a possible method for calculating
the IF impedance and the bandwidth of the bolometer. Section VI summarizes the results.



II. Large signal model
Figure 1 shows the schematic heat flow in a small segment of a bolometer. The electrons
are heated by the absorbed LO power (PLO) and DC bias power. PLO is absorbed
uniformly along the bolometer with length 2L, but the absorption of DC power is not
uniform and depends on the bias current I0 and the local resistivity �(Te). In steady state
this heat is partly transferred to the phonons (Pe�p) and partly to the electrons in the
neighboring segments due to the electron thermal conductivity. Here it is assumed that
power that is carried by the phonons (Pe�p) is directly transferred to the substrate
(Pp�substrate). There the thermal conductivity of the phonons in the direction of the
bolometer strip is neglected. The electron thermal conductivity, �e, is a function of the
electron temperature. Below the critical temperature, Tc, it is proportional to Te

3 and
above Tc it is proportional to Te

1 [10]. A denotes the cross section area of the bolometer
strip.

Figure 1. The heat flow in a small segment of the bolometer.

The electron-phonon and phonon-substrate thermal coupling can be written as:
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where �e, �p are the electron-phonon and phonon-substrate cooling efficiency
respectively [8]. For NbN n is found to be equal to 3.6 in (1) [8].

The heat balance equations for a small segment of the bolometer can be written as:
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Solving (3.II) approximately for Tp and substituting in (3.I) yields:
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Note that the dimension of all the terms in (4) is W/m. and �eff and �e depend on the cross
section area of the bolometer [7]. The corresponding dimensions of  �eff and �e are given
in table 1.

The electron temperature dependence of the resistivity is assumed to be:
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where the �N is the normal resistivity, Tc is the critical temperature and �T  is a measure
for  the transition width. Figure 2 shows the resistivity as a function of temperature. If we
define �T as the width of the transition form 10% to 90% of the normal resistivity, it is
possible to show from (5) that:

TTT δδ ⋅≈⋅=∆ 4.49ln2 .

Figure 2. Resistivity as a function of temperature.

Equation (4) is solved numerically for Te(x) with the boundary conditions:

bathee TLTLT ==− )()(

where 2L is the bolometer length. Note that the x-axis is in the direction of the bolometer
strip and the origin is at the center of the bolometer.
Once the temperature profile is calculated the resistance of the bolometer takes the
following form:
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III. Small signal model and conversion gain
The bolometer circuit is shown in figure 3. The mixing term at IF causes resistance
fluctuations in the bolometer. The corresponding small signal voltage drives a current
through the amplifier at the IF frequency. Note that this current goes through the
bolometer as well and causes additional heating and consequently additional change in
the resistance, which must be taken in to account. This effect is referred to as
electrothermal feedback.

Figure 3. The bolometer circuit

From the above circuit the conversion gain of the mixer is derived as [7]:
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where PL is the power in the load resistance and PS is the absorbed signal power. CDC and
CRF are the heating efficiencies of the absorbed DC and RF power respectively and
defined as:
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In order to calculate CDC, the LO power is kept constant and the resistance change due to
the small change in the bias current is calculated at each operating point. Special care has
to be taken when calculating CRF because keeping the current constant and applying a
small change in LO power will change the absorbed DC power as well, which in turn
changes the resistance. This contribution has to be deducted from the total resistance
change in order to calculate the resistance change due to the change in the absorbed RF
power only.

Assuming equal values for CDC and CRF, (7) is reduced to the corresponding relation
known from the point bolometer models [1,4].
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IV. Noise
The calculation of the Johnson noise contribution from the HEB noise model in [4]
neglected the fact that the dissipated power in the noise source is actually dissipated
within the HEB bridge, resulting in additional heating. Ignoring this term leads to a
discrepancy between the results when the voltage noise source is replaced by an
equivalent current noise source. A complete derivation for Johnson noise is given in the
appendix, taking this term in to account.

The contribution of the Johnson noise to the total output noise is:

2

0

02
0

2
0

00

1)(

4







+
−

−+

=

RR

RR
ICRR

TRR
T

L

L
DCL

Lout
Jn (9)

The expression for the DSB Johnson receiver noise temperature is simply obtained by
dividing the output noise (9) by two times the gain (7):
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In the one-dimensional hot spot model the electron temperature and the resistivity vary
spatially, which requires us to modify (10) as:
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From what has been derived originally in the point bolometer model [1,2] the output
thermal fluctuation (TF) noise is written as:
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where V is the bolometer volume, ce is the electron thermal capacity, and �e is the
electron relaxation time.

The double side band receiver noise temperature due to the TF noise is obtained by
dividing the TF output noise (12) by two times the gain (7):
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This expression also has to be modified for the one-dimensional distributed model. The
model presented here assumes that the electron temperature fluctuations in the bolometer
segments are uncorrelated. The derivation is given in the appendix B in detail and here
we only recall the result:
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Note that ce and �e depend on the electron temperature, which in turn depends on x.
The discussion in appendix B indicates that the output fluctuation noise is essentially
independent of the correlation length assumed.

The measured noise at the output of the mixer has three contributions and can be written
as:
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The third term is the ambient temperature (22 �C =295 K) at the input of the mixer, which
contributes to the output noise during this measurement.

The total receiver noise temperature is calculated using the usual expression:
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where TIF is the noise contribution from the low noise IF amplifier (	7 K) and G is the
conversion gain (7).

V. IF Impedance and Bandwidth
We are currently studying a possible method to calculate the IF impedance and
Bandwidth of the bolometer. The method is based on solving the time varying small
signal one-dimensional heat balance equation at the operating point. Adding the time
varying terms to (4) yields:
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where p denotes the small signal power due to the electrothermal feedback per unit
length. The electron temperature can be written as:
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Inserting (18) in (17) and separating the time varying part, an equation is obtained which

can be solved for )(
~

xT . Preliminary studies show a capacitive behavior of the bolometer,
as is well-known from the point bolometer model [1].

 A simple way to estimate the IF bandwidth is to assign a time constant for the phonon-
cooling process and another time constant for the diffusion-cooling process. The
diffusion-cooled power can be calculated by evaluating the gradient of electron
temperature at the pads. The power cooled by phonons is then the difference between the
total absorbed power and the diffusion-cooled power. The effective mixer time constant
can be obtained by weighting the time constants with their contributions to the total
cooling power.

VI. Results
The results of our calculations and measurements presented here apply to a 0.4 
m long,
4 
m wide and 5 nm thick NbN HEB device on MgO (Device M2-1). The parameter
values used in (4) and (5) are summarized in table 1.

Parameter �e(Te) �eff �T Tc Tsubstrate RN

Value 6�10-18�Te
3 2�10-4 0.3 8.5 4.2 75

Dimension Wm/K W/(m.K3.6) K K K �

Table 1. The parameter values used in (4) and (5).

Equation (4) is solved numerically. Figure 4 shows the temperature profile obtained for
40 
A current and different absorbed LO powers.

Figure 4. The electron temperature profile across the bolometer at 40 �A bias current and mentioned
absorbed LO power.
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Figure 5 shows the calculated and measured IV curves for device M2-1. Except at bias
voltages below .4 mV, the calculated and measured IV curves are in excellent agreement.
In general the calculated IV curves tend to bend more at lower voltages than the
measured ones. On the other hand below .4 mV the noise is very high and the conversion
gain is very low so this region is hardly of any interest.

The optimum operating point was observed around 40 
A and 0.8 mV. Therefore we
focus on the middle curve which corresponds to 250 nW absorbed LO power and
calculate the conversion gain and the noise.

Figure 5. The measured (solid lines) and calculated (dots)  IV cures for device M2-1.

The calculated CDC and CRF (8) for the 250 nW absorbed LO power curve is shown in
figure 6.

Figure 6. Calculated CDC (left) and CRF (right) along the 250nW absorbed LO power curve for
different bias voltages.
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Inserting these values in (7), the conversion gain is calculated. Figure 7(a) shows the
calculated and measured conversion gain. Although the shape of the curves is similar, the
calculated values are about 9 dB higher that what we actually measured. The calculated
output noise (15) is a factor of 3 higher than what is measured. Figure 8(a) shows the
calculated and measured output noise. On the other hand because of the high gain, the
model predicts very low receiver noise temperature (16), which is shown in figure 9(a).

Figure 7. The measured (solid line) and calculated (dots) conversion gain for 250 nW absorbed LO
power; (a)  for high CRF values as shown in figure 4; (b) for  CRF values reduced by a factor of three.

This means that the model cannot predict the measured curves. However a close study
revealed that this is only due to the high CRF values. If we reduce the CRF values by a
factor of three, all the measured and calculated curves fit together. The calculated and
measured conversion gain, output noise and receiver noise temperature after this
reduction is depicted in figures 7, 8, 9 (b) respectively.

Figure 8 The measured (solid line) and calculated (dots) output noise for 250 nW absorbed LO
power; (a)  for high CRF values as shown in figure 4 ; (b) for  CRF values reduced by a factor of three.
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Figure 9. The measured (solid line) and calculated (dots) receiver noise temperature for 250 nW
absorbed LO power; (a) for high CRF values as shown in figure 4; (b) for CRF values reduced by a
factor of three.

After reducing CRF, the value of CRF I0
2 at a typical optimum operating point is 0.16.

Since I0/I00 (I00 is the current on the unpumped IV curve c.f. [1,4]) is about 0.4 at the
optimum point for receiver noise temperature [4], CRF I00

2 is about 0.7. This quantity was
used as an adjustable parameter in [4], and for optimum performance was found to be
about 1. This explains why the empirical "standard model" in [4] yields results in
agreement with experiment close to the optimum point.

VII. Conclusion
The one-dimensional distributed model is fully capable of predicting the IV curves,
conversion gain, output noise and receiver noise temperature within acceptable accuracy.
However this requires applying a tuning factor to the calculated CRF. This tuning factor
was found to be about 0.34 to fit the measured data for device M2-1. It simply means that
the resistance oscillation due to the mixing term in the RF is over estimated by
calculating a small resistance change due to small change in LO power. The physics
behind this factor is currently under investigation. Major progress has been made in
comparison with the point-bolometer model in for example [4], in that the variation of all
measurable quantities (conversion gain, receiver noise and output noise) with bias voltage
and LO power is predicted very well.
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Appendix A: Johnson noise
The thermal noise from a resistance R at temperature T can be written as:

TRkv Bn 42 = , (1.A)

where kB is the Boltzmann constant. In order to calculate the noise we can insert this
noise source in the bolometer circuit. Figure 1.A shows this circuit. �R and �I are small
variations of resistance and current respectively.

Assuming a point bolometer at temperature T0 and resistance R0, the noise equivalent
source is:



00
2 4 RTkv Bn = (2.A)

The total dissipated power in the bolometer is:
)())(( 0

2
000 IIvIIRRPP n ∆−+∆−∆+=∆+ (3.A)

Note that the dissipated power in the noise source is actually dissipated in the bolometer
as well and it is of great importance to take it into account. Ignoring this term leads to a
discrepancy between the results when the voltage noise source is replaced by an
equivalent current noise source.

Figure 1.A.   Bolometer circuit with equivalent Johnson noise source

Expanding the right side of (3.A) and ignoring the second order small signal terms, (3.A)
is simplified to:
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Separating the small signal and large signal parts yields:
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since RCP DC ∆=∆ , we can replace �P and solve (5.A) for �R which results in:

2
0

000

1

2

IC

IvCIRIC
R

DC

nDCDC

−
+∆−

=∆ (6.A)

Now it is possible to calculate the voltage across the bolometer:
( ) nvRRIIVV +∆+∆−=∆+ )( 000 (7.A)

Separating the large and small signal here too gives:

Ln RIvRIIRV ∆=+∆+∆−=∆ 00  (8.A)

where the small signal voltage �V is the IF voltage across the load. Solving for �I and
replacing �R from (6.A) yields:
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The output noise power is simply:
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Inserting (2.A) in (10.A) results in:
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where out
JnT is the output Johnsson noise.
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The equivalent noise temperature at the input of the mixer is obtained by dividing the
output noise by the conversion gain given in (7). The double side band (DSB) equivalent
noise temperature is a factor of two smaller than the SSB one. So the expression for the
DSB Johnson noise temperature at the input becomes:
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This result is in agreement with the expression derived by taking another approach [2],
and also with the general results for bolometers derived originally by Mather [11].

Appendix B: Thermal fluctuation noise
From the point bolometer model [1,2] the output thermal fluctuation (TF) noise is written
as:
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where V is the bolometer volume, ce is the electron thermal capacity, and �e the electron
relaxation time.

The double side band receiver noise temperature due to the TF noise is obtained by
dividing the TF output noise (1.B) by two times the gain (7):
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The total resistance fluctuation is the sum of all the resistance fluctuations of each small
segment of the bolometer due to temperature fluctuations. Thus dr, the resistance of such
a segment with length dx is written as:
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Note that the resistivity profile ( ))(xTeρ  is obtained from the electron temperature profile

)(xTe  from (5).

the total resistance of the bolometer is obtained by:
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The resistance fluctuation of a small segment of the bolometer can be written as:
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From (6.B) and (2.B) the thermal fluctuation noise temperature from this small part is
derived as:
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Now if we assume that all these local temperature fluctuations are uncorrelated, the total
noise temperature is simply the integral of all the small contributions.
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we have also performed this calculation by assuming different values for the correlation
length of the TF noise. The result is essentially unchanged, provided that ( eT∂∂ρ ) varies

smoothly. The above assumption of an infinitesimal correlation length thus is justified,
unless the correlation length becomes comparable to the length of the bolometer.


	CONTENTS
	Opening Session
	I: HEB I
	II: SIS I
	III: Semi 1
	IV: HEB 2
	V: SIS 2
	VI: Micromachining
	VII: Posters
	VIII: HEB 3
	IX: High TC
	X: Semi 2
	XI: Antennas and Quasi Optical Structures
	ADDRESSES



