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Previous work with superconducting hot-electron bolometer (HEB) mixers has shown

that the primary source of noise in well optimized Nb devices is thermal fluctuation noise [1].

Our results for microwave mixing in sub-micron long diffusion-cooled thin film superconducting

aluminum HEB structures (Tc ~ 1.7K-2.4K) in the bath temperature range of T=0.25-1.6K [2]

show that is possible to operate the mixer, with good conversion efficiency and intermediate

frequency bandwidth, in a region where the thermal fluctuation noise is very small.  In these

devices, the resistive transition, R vs. T, is very broad.  At T/Tc  ~ 0.3 we still observe a

resistance that is consistent with ~0.2 µm  of the total microbridge length being resistive [3].   At

T=0.25K (T/Tc ~ 0.1) in zero magnetic field, the banks of the HEB are superconducting. By

applying a magnetic field H‡0.03T, the banks can be driven normal, in which case we again

observe that about 0.2 m of the 0.6 micron bridge is resistive.  Thermal fluctuation noise is

largest near the onset of Tc ¯ 2.5 K for that sample.  The best mode of heterodyne mixing in our

devices was observed at  low bias voltages ~0.2mV.

If the Al HEB with normal banks is modeled as a N-S-N structure with near ideal

transparency, then charge-imbalance arguments [4] can be invoked to explain the behavior of the

resistive transition near Tc. Noticeable fractions of the microbridge edges should be resistive since

the characteristic charge-imbalance diffusion length is non-negligible compared with the

microbridge length L.  The diffusion length is ΛQ*(T)=(DτQ*(T))
1/2

  [5]. The charge-imbalance

relaxation time τQ* is estimated from reported values of the inelastic scattering time τ i at the

Fermi energy [6], and the diffusion constant D  is measured from Hc2.  However, far below Tc

charge-imbalance effects should not be significant, and Andreev transfer of pairs should

dominate.  The resistance of the N-S boundaries should be negligibly small. At T=0.25K, the

quasiparticle population which can be injected into the superconductor is exponentially small.

Yet we observe a large series resistance at 0.25 K in a magnetic field H‡0.03T.  Thus, the

physical model for the resistance is not complete for the low temperature / low voltage regime,

even though excellent heterodyne performance is observed there and diffusion cooling appears to

be operative.

We discuss possible mechanisms to account for the measured device resistance as a

function of temperature, and how they effect the mixing mechanism and output noise  within the

context of a diffusion cooling model.
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