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Introduction

Phase gratings have become popular as local oscillator beam multiplexers for array
receivers in the submillimeter wavelength domain. In general, binary or multilevel
gratings, also known as Dammann gratings, are used [1][2][3][4]. Dammann grat-
ings can be designed and manufactured easily and perform satisfactorily for most
one{dimensional applications. Two{dimensional dispersion, however, is much more
diÆcult to achieve. This is mainly due to the fact that a two{dimensional multilevel
structure can not be machined easily.

We introduce a new type of phase grating, the Fourier grating, which replaces the
sharp edges of the multilevel gratings by a smooth grating structure. These gratings
can be machined easily with standard machine shop equipment. The grating design
is relatively simple and the di�raction eÆciency is usually signi�cantly higher than
the eÆciency of Dammann gratings. Typical eÆciencies for two{dimensional gratings
are above 80%. For one{dimensional dispersion, eÆciencies beyond 90% are typical.

In this paper we describe the design and the manufacturing of one{ and two{
dimensional Fourier gratings, and present beam measurements performed with re
ec-
tion gratings at a frequency of 0.5 THz.

The Grating Concept

The Fourier grating concept is an extension of the well known sinusoidal phase
grating. In the following we describe the design of symmetric one{dimensional grat-
ings. The general case is an obvious extension of this.

The spatial phase modulation within the grating unit cell is modeled by a �nite
Fourier series:
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where the unit cell extends from�D=2 toD=2. Every member in this sum corresponds
to a sinusoidal phase grating whose far �eld di�raction pattern is given by the Fourier



transform of exp[an cos(n � 2�x=D)]; the electric �eld in the grating plane [5]:
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Jq denotes the Bessel function of the �rst kind of order q.

Taking the complete Fourier series of eq. (1) corresponds to multiplying the �elds
of many sinusoidal gratings. This results in a di�raction pattern consisting of a
multiple convolution of the di�raction �elds of the individual Fourier components:
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This expression is mathematically fairly elegant, but for computational purposes it is
usually much more eÆcient, to calculate the Fourier transform of the aperture �eld
using a numerical FFT algorithm.

Thus, the set of Fourier components an of the phase modulation de�nes a set of
complex coeÆcients bi, each of which describes the �eld in one di�raction order of the
grating. Since we are only interested in the intensity distribution within the di�raction
pattern, our task consists of �nding a set of an, which produces the desired set of
bib

�

i . For our standard example | a one{dimensional grating producing a symmetric
pattern of four beams | this set is bib
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We cannot calculate the set of an directly, and therefore have to resort to a nu-
merical optimization to �nd the best values. This optimization is made diÆcult by
the fact that the parameter space contains an extremely large number of local op-
tima, and only for a very small fraction of all possible starting values the optimization
converges to the global optimum.

We have developed two strategies to obtain good starting values. The �rst method
is to randomly choose a large number of starting values. Although this is very crude,
it proved to be rather eÆcient for gratings using a relatively small number of Fourier
components (i.e. N

<
� 10). This range of N includes most common one{dimensional

gratings and a large number of simple two{dimensional gratings.

For larger numbers of Fourier components, we perform an inverse Fourier trans-
form on the desired di�raction �eld. By varying the relative phases between the
di�raction orders, we try to obtain a 
at amplitude distribution in the grating plane.
The resulting phase distribution is expanded into a Fourier series, which then serves
as starting values for the optimization. This technique is faster but less complete
than the �rst one. Although it may miss the global optimum, it usually still gives
very good results.



For a large enough number of randomly chosen starting values the �rst method
necessarily �nds the global optimum for a given number of Fourier components. As
long as the di�raction pattern is not too complex, we �nd that the optimum grating
structure only requires a few non{zero Fourier components. Due to the completeness
of the Fourier series expansion, this means that our approach converges rapidly to
the best possible phase grating for the desired di�raction pattern.

Figure 1: Comparison of Fourier gratings using di�erent numbers of Fourier coeÆcients.

The lower panels show the di�raction patterns produced by the grating pro�les in the upper

panels.

Grating Performance

To illustrate the potential of the Fourier grating concept, we now take a closer look
at one example, a grating that splits an incoming beam into four equally spaced beams
of equal intensity. In the symmetric case the power is then distributed between the
di�raction orders �3, �1, +1, and +3. Fig. 1 shows the di�raction patterns obtained
for di�erent numbers of Fourier components together with the corresponding grating
unit cell structure. It is obvious that already with a very smooth structure composed
of 5 components we get a very good grating with� 87% eÆciency. The power lost into
parasitic di�raction orders decreases rapidly, as we increase the number of coeÆcients.
Correspondingly, the grating eÆciency rapidly approaches the limiting eÆciency of
92% (Fig. 2).

In Fig. 3 we compare grating eÆciencies for di�erent one{dimensional gratings pro-
ducing a certain number of identical beams. Typical eÆciencies that can be reached
are higher than 90%. Gratings for an even number of beams require a larger number
of Fourier components and usually have a somewhat lower limiting eÆciency than



Figure 2: Di�raction eÆciency of a Fourier

grating plotted against the number of coef-

�cients used in the optimization. The grat-

ing was optimized to produce four identical
beams in a symmetric pattern.

Figure 3: Di�raction eÆciency of Fourier

gratings producing a given number of iden-

tical beams, using N = 5 Fourier coeÆcients

(dotted line) or N !1 (solid line).

gratings for odd numbers. The reason for this is that, in order to produce a symmet-
ric pattern of an even number of beams, we need to suppress all the even di�raction
orders. This is achieved by the sharp steps in the grating unit cell (right hand panel in
Fig. 1) which splits the unit cell into two identical sub{cells with a relative phase shift
of �. To closely approximate this phase step, a relatively large number of Fourier com-
ponents would be required. However, as we have seen, excellent grating eÆciencies
can be achieved with surprisingly crude approximations of the phase step.

The question arises, whether an asymmetric di�raction pattern could yield higher
grating eÆciencies in this case. For instance, we could produce an asymmetric four
beam pattern consisting of the di�raction orders �2, �1, 0, and +1. The optimum
grating we obtained for this beam arrangement has the same eÆciency as the sym-
metric grating, and its unit cell is basically identical (Fig. 4). The only di�erence in
the grating structure is that the above mentioned phase step is replaced by a sawtooth
pattern with a grating blaze angle corresponding to the �0:5th di�raction order.

Two{dimensional Gratings

For the common case of a rectangular beam pattern, the corresponding grating is
just an orthogonal overlay of two one{dimensional gratings. Accordingly, the grating
eÆciency is typically about 80 to 90%, the product of the eÆciencies of the one dimen-
sional gratings. Since the two orthogonal patterns can be optimized independently,
this case is not fundamentally di�erent from the one{dimensional problem.

In the general two{dimensional case similarly high eÆciencies are obtained as long
as the grating structure is suÆciently simple that our method of choosing the starting
values for the optimization works well enough. Very complex beam patterns requiring



Figure 4: Transition from a symmetric grating to an equivalent asymmetric grating. Adding

a phase gradient to the symmetric structure and 
ipping the sign of every other phase step

yields the optimum asymmetric structure. E�ectively, the step function in the symmetric

grating thus changes into a blaze function to the �0:5th di�raction order.

a highly structured grating unit cell may end up with somewhat lower eÆciencies.
Since the number of Fourier components to be optimized is now N2, it is much more
diÆcult to �nd the global optimum. However, for the application we have in mind,
namely the distribution of LO power to an array of heterodyne mixers, the beam
patterns are usually suÆciently simple that this is not a real concern.

Bandwidth

The bandwidth of phase gratings is limited by two e�ects. First, the intensity
balance between the di�raction orders is wavelength dependent and, second, due to
the frequency dispersion of the grating, the spacing between beams also varies with
wavelength. Usually the latter e�ect is dominating. However, it can be compensated
for by some sort of zoom optics. The frequency dependent intensity balance is intrinsic
to the phase grating concept and can not be in
uenced by external optics.

Since the gratings are so easily manufactured, we deal with this problem by making
several gratings that cover di�erent parts of the required total receiver band. In our
application, we can cover a relative bandwidth of approximately 10 to 20% with each
grating. Thus, the need to change the grating only arises when the receiver frequency
is changed by a considerable amount.

Having exchangeable gratings requires a means of relocating the gratings with
high accuracy in order to maintain the optical alignment when gratings are swapped.
To achieve this, we machine the mounting surfaces of the gratings together with the



Figure 5: Surface topology of the grating used in the beam measurements shown in Fig. 6.

13�13 coeÆcients have been used in the optimization. The theoretical eÆciency is 84%

grating structure. In our measurements we could not detect any alignment changes,
when these gratings were exchanged.

Manufacturing

The main advantage of the Fourier grating is that high di�raction eÆciencies are
reached with very smooth grating surfaces. This allows us to manufacture re
ection
gratings by directly machining them with a relatively large diameter cutting tool. We
produced a number of gratings with a unit cell size of 30�30 mm2 for a frequency of
492 GHz. The grating structures used 13 Fourier components per dimension, resulting
in a minimum radius of curvature of approximately 7 mm, which is comfortably larger
than the 3 mm tool radius we used for machining.

Our Fourier gratings are manufactured by directly milling the structure into a
block of brass, using a spherical end mill on a numerically controlled milling machine.
Measurements with a dial indicator show that the resulting surface accuracy is ap-
proximately 2 �m RMS. This accuracy corresponds to �=300 at the design frequency
and should be good enough for gratings operating well into the THz region.



Figure 6: Measured 490 GHz di�raction pattern of the grating structure shown in Fig. 5.

From the extremely low side lobe level it is obvious that the grating eÆciency is very high.

Measurements

As an example for the practical results obtained with the Fourier gratings, we
present the measurements made with a grating producing a two{dimensional pattern
of 2, 4 and 2 beam in 3 parallel rows (Figs. 5 and 6). This pattern is important
for the use in square 4�4 arrays that are split into two interleaved sub{arrays. Two
identical versions of this beam pattern, rotated by 90 degrees with respect to each
other combine to a 16 pixel square array.

For the measurements, the beam of a 492 GHz SIS receiver [6] was re-imaged
to form a waist at the plane of the grating. The di�racted beam pattern was then
scanned with a chopped liquid nitrogen load mounted on an xy{translation stage.
The clean beam pattern and the low side lobe level (Fig. 6) show immediately that
the concept works well and that the grating eÆciency is very high. In fact, within
the measurement accuracy there is no deviation from the predicted beam pattern and
the measured di�raction eÆciency is within 1% of the theoretical value.



Conclusion

We have shown that the novel concept of designing submillimeter phase gratings
as Fourier gratings works very well. The gratings are relatively easy to design and
have very high di�raction eÆciency. Due to their smooth surface structure, they can
be machined directly, even as re
ection gratings with two{dimensional dispersion.

We have manufactured a series of gratings and tested them at 490 GHz showing
that they can be produced suÆciently accurate with standard machine shop equip-
ment, and that they perform as predicted.
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