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ABSTRACT 

The performance of 1 THz waveguide and quasi-optical mixers incorporating 
NbTiN/SiO2/Al tuning circuits are evaluated. Both geometries yield low mixer noise 
temperatures up to 1 THz, with reduced sensitivities at higher frequencies. The drop in 
sensitivities above 1 THz is attributed to the non-ideal structure of NbTiN films grown at 
room-temperature, which results in significant losses in the NbTiN ground plane above 1 
THz. The design and performance of the quasi-optical lens-antenna is also discussed. 

1. INTRODUCTION 

The Heterodyne Instrument for the Far-Infrared (HIFI) requires THz mixers with noise 
temperatures (TN,mix) < 3·hν/k (i.e. < 140 K at 960 GHz). Past work has shown that Nb-
based superconductor-insulator-superconductor (SIS) mixers yield quantum-limited 
performance below 680 GHz [1,2]. Above 700 GHz, rf losses in Nb increase [3,4], such 
that Al wiring is preferred to Nb above 800 GHz [5,6]. Unfortunately, the optimum 
sensitivity of these mixers is limited to 200-250 K at 1 THz (derived from [6] and [7]). 
Further improvements in THz mixer sensitivities will require reduced tuning circuit 
losses (5-9 dB in [6,7]). Although this may be achieved in part by the use of high current-
density (high-Jc) SIS junctions [8], truly quantum-limited 1 THz mixers will require low-
loss superconducting wiring layers with Fgap ~ 1.1 THz, or more. 

The recent demonstrations of NbTiN-based SIS receivers with noise temperatures of 
205 K at 798 GHz [9] and 315 K at 980 GHz [10] confirm that the use of NbTiN-based 
tuning circuits can yield low-noise mixers up to 1 THz. However, it remains to be shown 
that similar performance is attainable above 1 THz – based on Tc, NbTiN = 14.5-15.5 K, and 
the measured relationship between Fgap and Tc in NbN (Fgap = 3.52-4.16·kBTc/h [11,12]), 
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it is predicted that NbTiN is low-loss up to 1.05-1.35 THz. 

In this paper, the performance of THz waveguide and quasi-optical mixers 
incorporating Nb/Al-AlOx/Nb SIS junctions and NbTiN/SiO2/Al tuning circuits are 
compared and analyzed in relation to the measured low-frequency electrical properties of 
the NbTiN films used as a ground plane. Additionally, the antenna beam-pattern of the 
quasi-optical lens-antenna system is discussed. 

Note that all receiver and mixer sensitivities presented here are calculated using the 
Callen-Welton formulation [13] for the effective temperatures of the signal loads and 
optical elements. Also, TN,mix, is defined as the DSB input noise of the mixer unit, from 
the input of the beam-forming element (waveguide horn or quasi-optical lens) to the IF 
connector. It is calculated from the receiver noise by subtracting the contributions of the 
IF chain and receiver optics. 

2. MIXER DESIGN AND FABRICATION 

Waveguide mixers are produced by integrating 7.5 kA/cm2, 1-µm2 Nb SIS junctions 
with a 300-nm NbTiN ground plane, a 250-nm SiO2 dielectric layer, and a 400-nm Al 
wiring layer (see Fig. 1). The NbTiN ground plane has Tc ≈ 14.4 K and 
σ16K ≈ 0.9×106 Ω-1m-1 [14], while the sputtered Al has σ4K ≈ 2×108 Ω-1m-1, and is 
expected to be in the anomalous limit [15]. 100 nm of Nb is added to the Al wiring for 
chemical passivation, and to reduce the series resistance of the rf-choke filter. For RF 
measurements, the devices are mounted in a full-height 1 THz mixer block with a 
diagonal horn. The waveguide mixer and its fabrication process are described in more 
detail in [16,17]. 
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Figure 1.  (a) cross-section of the NbTiN/SiO2/Al tuning circuit (modified from [16]), 
(b) microscope image of the waveguide device geometry used here (modified from [16]), and 
(c) microscope images of the quasi-optical device geometry used here (modified from [10]). 
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Quasi-optical mixers are produced by integrating twin-slot antennas with a double-
junction tuning circuit, using the same junction and layer geometry as in the waveguide 
mixer (note that the 100-nm Nb layer is not present on the wiring of the quasi-optical 
mixer). For RF measurements, the quasi-optical devices are mounted on a 10-mm 
elliptical Si lens. The quasi-optical mixer design is described in more detail in [10,18]. 

3. RF MEASUREMENT SETUP 

The quasi-optical and waveguide receivers are described in [10] and [16], respectively. 
The waveguide receiver includes a 100-µm Mylar window at 295 K, a Zitex G104 heat-
filter at 77 K, and a high-density polyethylene lens at 4 K, while the quasi-optical receiver 
includes a 12-µm Kapton window at 295 K, and Zitex heat-filters at 77- and 4-K. The 
direct-detection response of each mixer is measured in an evacuated Michelson 
interferometer, while heterodyne sensitivity is determined from Y-factor measurements 
with 295- and 77-K loads, BWO local oscillators (LOs) operating between 830 nd 1100 
GHz, and Mylar beamsplitters of 6-, 14-, and 49-µm thickness. The IF output from the 
mixer is cryo-amplied before being further amplified and bandpass filtered at room 
temperature. Using the unpumped mixers as noise sources, the noise and gain of the IF 
chain are determined to be 4-5 K and 68 dB in an 85 MHz band at 1.46 GHz. 

4. DIRECT-DETECTION MEASUREMENT RESULTS AND THE NBTIN CUT-OFF 

The fixed-tuned direct-detection responses of four waveguide mixers and two quasi-
optical mixers are shown in Fig. 2 (all at 4.6 K). Both geometries yield high sensitivities 
below 1 THz. However, all 4 waveguide devices, plus one of the two quasi-optical 
mixers, have high-frequency cut-offs at ~ 1 THz, despite having significantly different 
low-frequency roll-offs. This common cut-off is attributed to losses in the NbTiN ground 
plane at 1 THz and above. 

Also shown in Fig. 2b are calculations of the predicted direct detection responses of 
each quasi-optical device for two possible NbTiN gap frequencies – 1080 and 970 GHz. 
In these calculations, the NbTiN surface impedance is calculated using the frequency-
dependent resistivity of a superconductor in the anomalous limit [3]. Further details of 
these calculations can be found in [10]. Comparing the measured and predicted device 
responses, it is seen that the response of device 166 can be relatively well predicted using 
NbTiN gap frequencies of either 970 or 1080 GHz, but that the high-frequency response 
of device 162 can only be modeled using a low NbTiN gap frequency (Fgap) of 970 GHz. 

The apparent NbTiN Fgap at 970 GHz is significantly lower than is expected for NbTiN 
with Tc = 14.4 K (1.05-1.25 THz is expected). However, recent work has shown that there 
are significant non-homogeneities in the properties of NbTiN films deposited at room 
temperature [19]. In particular, the Tc and resistivity of these films are strongly thickness-
dependent (up to ~ 300-nm), and inductive measurements of Tc yield significantly larger 
transition widths (∆Tc) than is observed in resistive measurements (signs of vertical and 

W Dang


W Dang
 

W Dang
 

W Dang
13



 

lateral non-homogeneities, respectively). Thus, it is believed that the observed 970 GHz 
tuning circuit cut-off is due to rf losses in the NbTiN ground plane in a relatively small 
number of grains with particularly low values of Tc. Fortunately, this argument also 
implies that it should be possible to increase the cut-off frequency by using higher-quality 
NbTiN layers (with higher Tc and improved homogeneity), such as those deposited on 
MgO substrates or at elevated temperatures [19,20]. 

5. HETERODYNE MEASUREMENT RESULTS 

The receiver noise temperatures of four waveguide and two quasi-optical mixers are 
shown in Fig. 3 for measurements at 4.6 and 2.8 K. In general, the measured heterodyne 
sensitivities and RF band-widths of these devices agree reasonably well with the direct-
detection response curves seen in Fig. 2. 

Using the waveguide mixers at 4.6 K, a minimum TN,rec of 425 K is obtained with 
device c07 at 895 GHz (with a 6 µm beamsplitter), while optimum sensitivity near 1 THz 
is obtained at 2.8 K with c37 and a 14 µm beamsplitter (TN,rec = 565 K and Grec = -12.9 
dB at 970 GHz). The 20 % improvement in the response of waveguide mixer c13 upon 
cooling from 4.6 to 2.8 K is typical for these mixer geometries (both waveguide and 
quasi-optical). Also, the sharp dip in the sensitivities of waveguide mixers c13 and c37 at 
980-990 GHz is due to water vapour absorption. 

Quasi-optical mixer 166 yields significantly higher receiver sensitivities than the 
waveguide mixers, with an optimum TN,rec of 253 K obtained at 850 GHz and 2.8 K. The 
noise of this receiver rises slowly approaching 1 THz (315 K at 980 GHz), with a sharp 
rise in TN,rec at 1 THz (to 405 K at 1015 GHz). Mixer 162 is significantly less sensitive 
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          (a)                   (b) 

Figure 2 -  (a) Measured direct-detection responses of four waveguide mixers at 4.6 K (modified 
from [16]). The devices have different junction sizes and separations, and different transformer 
lengths.  (b) Measured direct-detection responses of two quasi-optical mixers at 4.6 K (modified 
from [10]). The two devices have different junction areas, but are otherwise identical. Also seen 
are calculated device sensitivities for NbTiN gap frequencies of 970 and 1080 GHz. The 
predicted response of device 162 matches the measured curve for Fgap, NbTiN = 970 GHz. 
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than device 166, but it does demonstrate reasonable performance up to much higher 
frequencies (TN,rec ~ 2200 K at 1120 GHz). 

6. RECEIVER SENSITIVITY ANALYSIS 

Focusing on the devices with the highest THz sensitivities (waveguide device c37 at 
970 GHz and quasi-optical device 166 at 980 GHz, both at 2.8 K), the measured receiver 
sensitivities are analyzed to estimate the rf loss in the NbTiN ground plane, and to 
compare the sensitivities of the two mixer geometries. The details of these calculations 
are contained in [10] and [16], with the results summarized here in Table I. 

From this analysis, it is seen that the loss in the NbTiN ground plane is relatively low 
up to 970 GHz (< 0.6 dB), in both mixer geometries. Additionally, the significantly 
higher receiver sensitivity obtained with the quasi-optical mixer is found to be 

Table I 

Receiver noise breakdown and corrected mixer unit sensitivities of  
waveguide device c37 [16] and quasi-optical mixer 166 [10] 

Device TN,rec 
Grec 

TN,opt 
Gopt 

GTucker Gtuning GAl GNbTiN TN,mix 
Gmix 

WG c37 
(970 GHz, 2.8 K) 

563 
- 12.9 

146 
- 2.5 - 7.2 - 3.2 - 2.5-3 - 0.2-0.7 182 

- 10.4 
QO 166 

(980 GHz, 2.8 K) 
315 

- 11.1 
35 

- 1.2 - 7.2 - 2.7 - 2.3 - 0-0.4 171 
- 9.9 

All gains are in dB, while noise temperatures are Callen-Welton values, and are given in K. 
GTucker is the DSB conversion gain of the SIS junctions, and -Gtuning is the estimated tuning circuit 
loss, which is divided into -GAl, the loss in the Al, and -GNbTiN, the loss in the NbTiN. 
TN,mix and Gmix are the effective input noise temperatures and DSB gains of the mixer units. 
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           (a)                    (b) 

Figure 3 -  (a) Measured TN,rec for 4 waveguide devices measured at 4.6 K (c07, c13, and c71) and
2.8 K (c13 and c37). c13, c37, and c71 are measured with a 14-µm beamsplitter, while c07 is 
measured with a 6-µm beamsplitter (modified from [16]). (b) TN,rec of 2 quasi-optical mixers 
measured at 2.8 K with 6-, 14-, and 49-µm beamsplitters (modified from [10]). 
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attributable to the lower optical losses in the quasi-optical receiver – the effective 
sensitivities of the two mixer geometries are similar (TN,mix = 170-180 K). Furthermore, 
although additional work is needed to further improve mixer sensitivities (especially 
above 1 THz), it is noted that these values of TN,mix are already within ~ 30 % of the HIFI 
goal at these frequencies. 

Although the peak sensitivities of the two mixer geometries are similar, it is important 
to note that the quasi-optical mixers have significantly larger RF band-widths than the 
waveguide mixers. In particular, quasi-optical mixer 166 yields high sensitivity over most 
of HIFI mixer band 3 (800-960 GHz), while the waveguide mixers typically have 3-dB 
band-widths of 100-150 GHz, which is much too narrow for use in HIFI. The narrow 
band-widths obtained with the waveguide mixers is the result of them having a less-
mature RF design relative to that of the quasi-optical mixer (the combined design of the 
waveguide, waveguide probe, RF choke filters and NbTiN/SiO2/Al tuning circuit has not 
been optimized yet). An optimized design, incorporating a reduced-height waveguide [21] 
should yield much larger RF band-widths than those observed here. 

7. QUASI-OPTICAL MIXER BEAM-PATTERN MEASUREMENT SET-UP 

The far-field antenna beam-pattern of the quasi-optical mixers is measured in direct-
detection using a 2-D rotational setup [18]. In this measurement, a chopped local 
oscillator is used to pump the mixer while the mixer is rotated around its waist. The 
junction is biased at ~ 2.4 mV (just below its gap) and the detected signal (current) is 
measured with a lock-in amplifier. The signal-to-noise ratio at the peak of the co-polar 
beam pattern is at least 30-dB in this setup (limited by the dynamic range of the lock-in). 

Co- and cross-polar beam patterns are obtained using two polarizing grids located near 
the output of the local oscillator. (Two grids are used to ensure that the incident power is 
equal in the co- and cross-polar measurements.) 

Note that the LO is placed 50-100 cm from the mixer to ensure that the LO beam at the 
input to the mixer is large relative to offsets in the mixer’s beam waist that may occur if 
the center-of-rotation is slightly misaligned relative to the beam waist location. The 
spreading of the LO beam also ensures that the power incident on the mixer is low 
enough to maintain the linearity of the photon-assisted tunneling response of the device.  

Differences between the direct-detection and heterodyne beam-patterns of this mixer 
have not been quantified at this time. 

8. MEASURED AND CALCULATED ANTENNA BEAM-PATTERNS 

2-dimensional co- and cross-polar beam patterns of the quasi-optical mixer (at 
940 GHz) are presented in Fig. 4a and 4b, while 1-dimensional E- and H-plane cuts of the 
co-polar pattern (at 920 GHz) are presented in Fig. 4c and 4d. Fig. 4c and 4d also include 
theoretical antenna beam patterns calculated using [22] for two cases:  (1) the antenna is 
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perfectly aligned to the back focus of the lens; and (2) the antenna is offset 20 µm along 
the length of the antenna slots and 40 µm behind the back focus of the lens. 

Examining the 1-dimensional beam patterns in Fig. 4c and 4d, it is seen that the 
measured beam-widths are relatively well predicted by theory, with a slight improvement 
in the agreement if the antenna is assumed to be offset from the focus of the lens. Similar 
comparisons have been performed at 815, 860, and 1025 GHz, yielding similar agreement 
between measurement and theory, as summarized in Table II. These calculations are also 
found to relatively accurately predict the side-lobe levels in the co-polar beam-patterns – 
the measured side-lobes are ~ 15-18 dB below the main peak, and the predictions 
typically agree with the measurements to within 2-3 dB. Note that the asymmetry in the 
measured H-plane beam-pattern (Fig. 4d) may be due to a slight offset of the antenna with 
respect to the focus of the lens. 

The cross-polar beam pattern measured at 940 GHz (Fig. 4b) is similar to those 
obtained at 812 and 1020 GHz, with four peaks located symmetrically around the co-
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Figure 4 – Antenna beam patterns of a 950 GHz twin-slot antenna mounted on a 10-mm 
elliptical Si lens. (a) measured 2-D co-polar pattern at 940 GHz, (b) measured cross-polar pattern 
at 940 GHz, (c) overlay of measured and calculated [22] E-plane cuts of the co-polar pattern in at 
920 GHz, and (d) measured and calculated [22] H-plane cuts of the co-polar pattern at 920 GHz..
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polar main beam (~ 22-23 dB below the co-polar peak). This general shape is in good 
agreement with calculations [22], although the peaks are 2-3 dB higher than expected. 
Note that the quality of the polarizing grids used is demonstrated by the 27-30 dB 
suppression of the co-polar main lobe in the cross-polar beam pattern. 

9. QUASI-OPTICAL LENS DESIGN FOR HIFI 

Quasi-optical mixers typically incorporate either the elliptical lens used in this work, 
or a hyper-hemispherical lens. Unfortunately, these two lens designs produce antenna 
beam-patterns with relatively extreme far-field divergence angles – the hyper-hemisphere 
produces a highly divergent beam (θ-10 dB ~ 25º), while the ellipse produces a highly 
collimated beam (θ-10 dB ≈ 110·λ/D ~ 3.5º for a 10-mm lens at 920 GHz). The extreme 
nature of these beam divergences can complicate the integration of a quasi-optical mixer 
into a complex optical system. For example, the design of the HIFI focal plane system 
would be simplified by the use of quasi-optical mixers with a relatively moderate beam 
divergence angle. This would allow the beam-shaping optics in front of a quasi-optical 
mixer to be similar to those used for a waveguide mixer with a corrugated horn (the horns 
in HIFI will produce a beam divergence angle of θ-10 dB ~ 18º). 

It is possible to reduce the far-field divergence angle of the beam produced by a hyper-
hemispherical lens by increasing the lens extension length [23], forming an extended-
hemispherical lens. However, this method introduces large phase errors to off-axis rays, 
yielding an aberrated beam-pattern. For this reason, it would be preferable to modify both 
the surface shape and the extension length to obtain a design that produces the desired 
beam divergence angle, while also minimizing optical aberrations. The detailed design of 
this lens is currently in progress. 

10. CONCLUSIONS 

Waveguide SIS mixers incorporating Nb tunnel junctions and NbTiN/SiO2/Al tuning 
circuits TN,rec = 565 K at 970 GHz. Using improved receiver optics, quasi-optical mixers 
with a similar tuning circuit yield TN,rec = 315 K at 980 GHz. Analyzing the noise and 

TABLE II 

Measured and calculated [22] far-field E- and H-plane –10 dB beam-widths of 
a 950 GHz twin-slot antenna with a 10-mm Si elliptical lens 

Frequency (GHz) θE,meas θE,calc 1 θE,calc 2 θH,meas θH,calc 1 θH,calc 2 

812 3.95 3.8 3.9 4.12 3.9 4.0 
860 3.85 3.6 3.6 3.98 3.6 3.8 
920 3.4 3.5 3.5 3.7 3.5 3.6 

1025 3.25 3.3 3.3 3.65 3.1 3.4 
All beam-widths are the far-field angle in degrees. 
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gain of these receivers, it is shown that the intrinsic sensitivities of these mixers are 
similar near 1 THz (TN,mix ~ 170-180 K at 970-980 GHz), and that the loss in the NbTiN 
ground plane is relatively low (< 0.6 dB) up to 980 GHz. Receiver sensitivities are seen to 
drop above 1 THz, due to increasing loss in the NbTiN ground plane due to rf absorption 
in a relatively small concentration of NbTiN grains with Tc’s that are significantly lower 
than that measured for a relatively large 300-nm thick film. 

Measured antenna beam-patterns for a quasi-optical mixer with a twin-slot antenna 
mounted on a 10-mm elliptical Si lens are shown to be in relatively good agreement with 
theoretical predictions. The ongoing optimization of the quasi-optical lens-antenna for 
integration into the HIFI optical system is also discussed. 
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