
Low noise 1.2 THz SIS receiver 
 

A. Karpov, D. Miller, F. Rice, J. Zmuidzinas 
California Institute of Technology, Pasadena, CA 91125, USA 

 
J. A. Stern, B. Bumble, H. G. LeDuc 

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 

 
Abstract  We present the development of a low noise SIS 
mixer for the 1.1-1.25 THz heterodyne receiver of FIRST space 
radiotelescope. The quasi-optical SIS mixer has two 
NbTiN/AlN/Nb junctions with critical current density 
30 kA/cm2. The individual junction area is close to 0.65 µm2. The 
SIS junctions are coupled to the optical input beam through a 
planar double slot antenna and a Si hyperhemispherical lens. 
The minimum DSB receiver noise temperature is 650 K, about 
12 hν/k.  

I. INTRODUCTION 
 

In the last decade, SIS receivers using Nb/AlOx/Nb 
junctions and superconducting Nb circuits have become the 
best practical solution for the ground-based radio astronomy 
at mm and submm wavelengths [1]. The minimum submm 
SIS receiver noise is only three times above the quantum 
limit [2]. This type of ultra low noise receiver is needed to 
cover the upper part of the atmosphere transparency band 
accessible to ground-based radio astronomy facilities. The 
upper frequency limit of these SIS receivers is determined by 
the gap frequency of Nb (fgap=0.65-0.7 THz) due to the loss 
in the Nb circuit. Another frequency limit at about 1.7 fgap 
=1.0 THz-1.1 THz is due to the cancellation of the quantum 
assisted tunneling when approaching 2fgap.  

SIS mixers at frequencies over 1 THz are needed for 
sensitive receivers for airborne and space observatories. This 
motivates research on alternative materials for low loss THz 
circuits as well as new types of SIS junctions having a higher 
gap frequency. 

Recent progress in thin film NbTiN technology [3] has 
given  the possibility to create low loss circuits above 0.6-
0.7 THz and to improve the performance of the SIS mixers 
with Nb/AlOx/Nb junctions up to 1 THz [4, 5]. Another 
approach, using a low loss normal metal circuit to build a low 
noise 1.05 THz SIS mixer, has been demonstrated in [6, 7]. 

The introduction of the NbTiN/AlN/Nb SIS junctions 
along with NbTiN circuits allows a substantial improvement 
of the SIS mixer operation up to 900 GHz, with the minimum 
noise within a factor of ten of the quantum limit [8]. The gap 
voltage of the existing NbTiN/Nb/AlN/NbTiN junction is 
about 3.4 mV, potentially allowing the extension of SIS 
mixer operation above 1.4 THz.  

The goal of our work is to extend the low noise 
performance of the SIS receivers into the THz band using the 
NbTiN technology. Our approach to build a low noise 1.1-
1.25 THz SIS mixer is to use a NbTiN/AlN/Nb tunnel 
junction with a high critical current density and a low loss 
circuit made of normal metal and superconducting thin films 
in a quasi-optical mixer design.  
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Fig. 1. Current-Voltage characteristic of the NbTiN/AlN/Nb 
junction with (thinner line) and without radiation at 1130 GHz. 
Critical Josephson current density is about 30 KA/cm2. 

 
II. SIS JUNCTION 

 
We use NbTiN/AlN/Nb SIS junctions with critical 

Josephson current densities around 30 KA/cm2. A current-
voltage characteristic (CVC) of a two-junction array with a 
total area of 1.3 µm2 is presented in Fig. 1. This junction has a 
sub-gap to normal state resistance ratio of about Rsg/Rn=12.  

A sharp quantum step appears when radiation at 1130 
GHz is applied (dotted line). The quantum step width is 
reduced from hν/e=4.8 mV to hν/e-4∆/e=2 mV, due to the 
mutual cancellation of the two quantum steps, at the positive 
and the negatives branches of CVC. We see only some minor 
traces of the hot electron effect in this device, appearing like 
a heating effect in a CVC of a pumped SIS junction. 

 
III. SIS MIXER 

 
We are using a quasi-optical SIS mixer design, similar to 

one described in [6]. The SIS junction with a double slot 
planar antenna is mounted at the Silicon hyperhemispherical 
lens. A polyethylene lens is used to collimate a broad 
(f/d=2.5) beam coming out of the hyperhemispherical lens 
into a beam with f/d of about 15 (Fig. 2). The SUPERMIX 
program [9] was used for the circuit design and optimization. 
We expect about 1 dB loss in the mixer circuit in the 1.1 THz 
– 1.25 THz range when using a NbTiN ground plane, Al 
wiring layer and SiO insulating layer, and around 1.5 dB loss 
when using a full normal metal circuit. 
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Fig. 2. The measured beam pattern of the SIS receiver at 1.13 THz. The H 
plane data are shown with dots, and the E plane data with diamonds. The 
Gaussian fits to the E and H plane data are nearly identical (solid lines) with 
the f/d ratio about 15 at –10 dB level. 
 

 IV. TEST SIS RECEIVER 
 

The SIS receiver is mounted in an Infrared Laboratory 
HL-3 cryostat. The vacuum window is in Mylar 12 µm thick. 
The infrared filter at the 77 K stage of the cryostat is of Zitex. 
The local oscillator power is coupled to the mixer beam using 
a polarizing grid rotated at 45º as a 3 dB coupler. 

The intermediate frequency range is 1 GHz – 2 GHz and 
the IF amplifier noise is about 10 K. 
 

V. EXPERIMENT 
 

The receiver beam pattern has been measured using the 
heterodyne detection of a hot black body (a heater) of a small 
size. The signal was modulated with a chopper and detected 
with a lock-in amplifier. The E and H plane measured data 
are presented in Fig. 2 with diamonds and dots, respectively. 
The measured beam is symmetrical. The Gaussian fits to the 
E and H data are identical within the precision of this 
measurement (solid lines in Fig.2). At the –10 dB level the 
beam f/d ratio is about 15. 

The receiver sensitivity test at 1130 GHz is presented in 
Fig. 3. Here the solid lines present the receiver output IF 
power as a function of the SIS junction bias. From upper to 
lower, the curves are the measured data with the hot load, the 
cold load, and without local oscillator power. For the hot load 
experiment, the receiver is looking at a black body at 296 K 
ambient temperature. For the cold load experiment, we are 
using a liquid nitrogen cooled black body coupled to the 
receiver beam with a 3 dB coupler (polarizing grid rotated at 
45º). The effective temperature of the cold load is expected to 
be 186 K. The receiver Y factor is 1.13 and the DSB noise 
temperature is 650 K. The receiver conversion gain is -13 dB. 

The receiver noise may be improved using an IF 
amplifier with a lower noise temperature, and with a further 
optimization of the mixer circuit loss. 
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Fig. 3. SIS receiver Y factor measurement at 1.13 THz. The solid lines from 
upper to lower present the power at the receiver IF output: data with a hot 
load, with a cold load and data without local oscillator power. The dotted 
lines are the CVC with and without LO power. The receiver noise 
temperature is about 650 K. The cold load consists of the liquid nitrogen 
cooled load coupled via a 3 dB coupler. The hot load effective temperature is 
296 K and the cold load is expected to be 186 K. 

 
VI. CONCLUSION 

 
We developed a SIS receiver for the 1.1-1.25 THz range. At 
1.13 THz frequency the receiver double sideband noise 
temperature is about 650 K. The receiver is using a quasi-
optical mixer design with a Si hyperhemispherical lens and 
twin NbTiN/AlN/Nb SIS junctions with a critical current 
density of 30 KA/cm2.  
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