
  

  
 

The resistive transition of aluminium hot electron bolometer 
mixers with normal metal cooling banks 

 
 

A. H. Verbruggena, T. M. Klapwijka, W. Belziga, and J. R. Gaoa,b 

 
a Department of Applied Physics and DIMES, Delft University of Technology, Lorentzweg 1, 

2628 CJ Delft, The Netherlands 
 

b Space Research Organization Netherlands (SRON), Utrecht, The Netherlands. 
 
 
Abstract:  
 

We perform a theoretical analysis based on the superconducting proximity-effect model 
for the resistive transition of an aluminium superconducting hot electron bolometer mixer 
when the cooling banks are in the normal state. We compare our calculated result with a 
recently reported measurement1. Our calculation qualitatively reproduces the observed feature 
in which the resistance drops quickly around Tc with decreasing temperature, but saturates at a 
value roughly being one half of the normal state resistance. It also opens the question about 
which type of cooling banks (normal or superconductor) is favourably for low noise 
performance. 

 
 

I. Introduction 
 

Superconducting hot-electron bolometer (HEB) mixers are currently the best candidates 
for heterodyne spectrometers operating at frequencies of a few THz. They combine a high 
sensitivity with the need for only very low local oscillator (LO) power. The operating 
principle is absorption of radiation by the electrons leading to an elevated electron 
temperature, which is thermalized to the bath temperature either by phonons (phonon-cooled) 
or diffusion to large cooling pads (diffusion-cooled). The elevated temperature, which is a 
measure of the absorbed power, leads to a resistance change exploiting the difference in 
resistance between the superconducting state and the normal state. Originally, it was assumed 
that the devices would be operating at the transition temperature of the superconductor2. Later 
it was recognized that in practice the devices are brought by a bias current into a state in 
which part of the bridge is normal (electronic hot spot) and part is superconducting3-6. The 
mixing results from a modulation of the length of the hot spot with absorbed power.  

The mixers used and studied most thoroughly are based on niobium microbridges using 
large Au cooling pads at both ends (here we focus on diffusion-cooled HEB’s). In response to 
theoretical estimates, predicting a higher sensitivity, broader IF bandwidth, and lower LO 
power, aluminium has been proposed as an attractive alternative for diffusion-cooled 
HEB’s1,7-9. Unfortunately, the mixing results have so far been disappointing suggesting that a 
good understanding of the behavior of these nano-scaled microbridges consisting of 
superconducting and normal parts is lacking. In this paper we present a theoretical analysis of 
the resistive transition of such a system using the microscopic theory of the proximity-effect.  
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Fig.1. A schematic view of an Al supercon-
 ducting hot electron bolometer mixer 
 with normal metal cooling banks. 

Fig.2. Resistance of 0.6 µm long Al wire
 as a function of temperature measured 
 by Siddiqi et al.1 

 
As a starting point we will use a recent observation of Siddiqi et al.1 about the resistive 

transition of an Al HEB mixer (Fig.2). The resistance drops quickly around a temperature of 1 
K, but surprisingly saturates at about 50 % of the normal state resistance even down to very 
low temperatures. The measured device (Fig.1) consists of a thin, narrow Al microbridge with 
a length of 600 nm, a width of 100 nm, and a thickness of ~15 nm. The cooling banks are in 
essence thick and wide Al. The intrinsic superconducting transition temperature of the Al 
bridge is not exactly known, but expected to be in the range of 1.5-2.4 K. The Tc of the banks 
is considerably lower than the Tc of the bridge, likely to be ~0.8 K. The diffusion constant of 
the Al microbridge equals 6 cm2/s. For the curve shown in Fig.2 the superconductivity of the 
banks is suppressed by applying a magnetic field, which means that the device consists of 
normal pads with a superconducting microbridge (NSN). 
  
 
II. Results of a model-calculation 
 

Since the resistance of the cooling pads is negligible compared to the measured 
resistance the observations imply that a substantial fraction of the superconducting bridge is 
resistive. It is well known that the conversion of a normal current to a supercurrent at an N/S 
interface leads to a resistive contribution due to charge imbalance. This fact has been used by 
Wilms Floet et al.10 in a previous attempt to model the resistive transition of HEB’s. This 
resistive contribution only appears due to quasiparticles with energies larger than the energy 
gap and hence, quickly disappears below the critical temperature. Quasiparticles with energies 
smaller than the energy gap are assumed not to contribute to the resistance and are converted 
into supercurrent through the process of Andreev-reflection. As pointed out by Siddiqi et al1, 
their observed anomalous behaviour must be related to the proximity-effect, i.e they find that 
the measured residual resistance corresponds to a length relating to the coherence length ξ(Τ). 
A similar observation has previously been made for Pb-Cu-Pb sandwiches by Harding, 
Pippard, and Tomlinson11 and subsequently explained by Krähenbühl and Watts-Tobin12. This 
implies that the assumption of Wilms Floet et al.10 of a negligible contribution to the 
resistance for quasiparticles with energies smaller than the energy gap must be corrected. To 
proceed the microscopic theory for the proximity effect, based on the Usadel equations 
supplemented with the appropriate kinetic equation13 must be used to calculate the spatial 
variation of the superconducting gap along the microbridge and the resulting contribution to 
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the resistance. Since we intend to focus on the issues of interest to the HEB community we 
neglect the details of the calculation14 and present only the results.  
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Fig.3. Density of states as a function of 
 position along the bridge for different 
 energies E at T/Tc = 0.1. 

Fig.4. Penetration of the electric field in the 
 bridge at T/Tc = 0.1 and 0.83. 

 
Fig.3 shows the calculated density of state at different positions along the microbridge 

for different energies E, which is normalized to ∆(0), for T/Tc = 0.1. (The microbridge is 
assumed to have a length of 1.2 µm, with a bulk energy-gap of ∆(0) = 0.2 meV, and a 
diffusion constant 100 cm2/s. Tc is the intrinsic critical temperature of an infinite long bridge 
consistent with the bulk energy gap). At the boundaries the normal metal density of state is 
imposed, meaning that ∆ is forced to zero in N. Note that even in the middle of the bridge the 
density of states does not become zero as one would expect for a bulk BCS superconductor. 
Fig. 4 shows the electrical potential inside the superconducting bridge at T/Tc = 0.1 and 0.83. 
At low temperatures a substantial drop in voltage is found near the interfaces over a length 
scale somewhat larger than the coherence length at zero temperature ξ(0), given by 
0.88( �/∆(0))1/2. The final and most relevant result of this analysis is shown in Fig. 5.  
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It shows the resistance of the microbridge as a function of temperature, reproducing very 
well the measured data given in Fig. 2. Note the apparent lower Tc as well as the large residual 
resistance of about half the normal state resistance. Unfortunately, a one-to-one 
correspondence to the experimental data cannot be made because the intrinsic Tc of the 
measured device is not known. Nevertheless, the calculation is believed to contain the 
essential physics demonstrating the role of the dominant parameter ξ(0)/L. 
  
III. Discussion 
 

The R-T curve is an important device characteristic because it provides valuable 
information about the superconductivity of the bridge and the cooling pads and on the 
interface between the bridge and the banks. However, this curve is not directly related to the 
mixer performance. The latter should be determined from the I-V curves. Unfortunately, the 
calculations are performed only for the linear response-regime (zero bias voltage). 
Nevertheless, the I-V curve is very likely governed by a thermal dissipation process starting at 
the NS interfaces, which is incompatible with an electronic hot spot concept used successfully 
for niobium HEB’s. Evidently, the proximity effect influences the resistive state stronger for a 
HEB with a bridge length comparable to ξ(0). Nb devices suffer less from the proximity 
effect since the length ξ(0) is relatively short.  

Over the question about which type of cooling banks (normal or superconductor), 
although no systematic study has been reported to compare the mixer performance for devices 
with the cooling banks in the superconducting state or in the normal state, it might be 
preferable for best sensitivity of also Nb HEB's to work at temperatures where the contacts 
are superconducting. This analysis suggests that one needs superconducting contacts for good 
performance of  HEB mixers. With superconducting contacts, the electronic hotspot can be 
formed at the center of the bridge and a high conversion gain is expected from the hot spot 
mixing model. To avoid heat trapping due to Andreev-reflection, which will reduce the IF 
bandwidth, the Tc of the banks however should be lower or much lower than that of the 
bridge. 
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