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Abstract 
 

We present a fabrication process for diffusion-cooled niobium hot-electron 
bolometers using a self-aligned process with gold as an initial protection layer and 
aluminum as an etch mask that is removed by a wet etch. This process proves to be 
reproducible and has a yield of ~70 % per batch. Great care has been taken to avoid 
processing temperatures above 120 °C to minimize degradation of the Nb film. 

We have performed heterodyne measurements of an HEB in a fixed tuned 
waveguide mixer at 804 GHz and at an IF-range from 1-2 GHz. The approximate 
dimensions of the bridge are 240 x 200 x 14 nm3. The Niobium bridge has a critical 
temperature of 6.0 K and a normal state resistance of 16.5 Ω. A standard Y-factor 
measurement leads to a minimum noise temperature of 1200 K at 1 GHz IF. The coupled 
LO-power is estimated by the isothermal method to be 21 nW. 
 
 

Introduction 
 

Superconducting Hot-Electron-Bolometers (HEB) utilizing thin superconducting 
films have become established as sensitive mixers in the THz region. The thermal 
response time τ  can be very small if the superconductor is thin enough that only the 
electron gas is heated and the cooling is fast enough. The bolometers described in this 
paper are cooled by out-diffusion of the hot electrons in normal conducting heat sinks 
(diffusion-cooled HEB) rather than interactions with phonons of the lattice (phonon-
cooled HEB) [1]. To meet the requirements for astronomical applications such as SOFIA, 
thermal response times down to several picoseconds are needed to get intermediate 
frequencies up to 10 GHz. 

Because of  τ ~ L2   [1] the dimensions of the bolometer bridge have to be very 
small. We have fabricated diffusion-cooled HEBs with short (L<300 nm) and narrow 
(<200 nm) bridges consisting of thin (10-14 nm) Niobium (Nb) on z-cut quartz substrates. 
The normal conducting heat sinks consist of 70 nm Gold (Au). In the following paragraph 
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we discuss problems and merits of several approaches for the fabrication of diffusion-
cooled HEBs.  

 
 

Device Fabrication 
 

Aside from a good reproducibility, the essential requirement for the fabrication of 
a diffusion-cooled HEB is a good transparency of the interface between the heat sinks and 
the material of the bolometer bridge. A thermal resistance results in a slower out-diffusion 
of the hot electrons and thus increases the effective bridge length and thermal response 
time.  

Defining the bolometer bridge by lift-off with subsequent deposition of the heat 
sinks (Fig. 1) [2] has the major disadvantage of high requirements for the overlap 
accuracy of the Electron-Beam-Lithography (EBL) system to position the heat sinks on 
the contact areas of the bridge.  
 

 
 
 
 
 

 
 
A solution is offered by the self-aligned process (Fig. 2). Here, the substrate is 

covered with a blanket layer of Nb. The heat sinks and a metal strip of the width of the 
bolometer bridge are deposited in succession. The bridge is now etched out of the blanket 
layer by using reactive ion etching (RIE) where the heat sinks and the metal strip serve as 
etch masks: the spacing between the heat sinks determines the bridge length while the 
metal strip defines the width. The overlap between Nb and Au heat sinks is large. 

 

 
 
 
 

 
 

Fig. 1: Outline of  HEB fabrication by lift off (top view) 

a) Bolometer bridge 
defined by liftoff. 

b) Deposition of the heat sinks. 
The contact area (shaded) to the 
heat sinks is small. 
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A self-aligned process for the fabrication of diffusion-cooled HEBs was developed 
at JPL [3]. It uses Au as protection layer deposited in-situ subsequent to the Nb blanket 
layer to prevent the Nb from oxidation and forming a thermal resistance. Au is also used 
as material of the metal mask for the definition of the bolometer bridge width (Fig.3).  
The process requires two gold etch steps which we found difficult to control due to 
variations in gold thickness after the first gold etch. The second etch step, removing the 
gold from the bolometer bridge, is then prone to destroy the bridge or leave a Au residue. 
 
 

 

 
 
 
 
 

In a first effort to solve this problem we tried not to use a protection layer at all. 
Without a protection this leads to the oxidation of the Nb surface as the wafer is exposed 
to air. This oxidation layer has to be removed prior to the deposition of the heat sinks, 
requiring an Ar sputter etch. Unfortunately this clean step turned out to be hard to control 
due to the small thickness of the Nb film. This lead to irreproducible DC-characteristics of 
similar-sized HEBs fabricated in the same batch showing contact resistances between 1 to 
35 Ohms and irregular resistance versus temperature curves. Hence, the use of an in-situ 
Au protection layer seems to be crucial for a good transparency of the Nb/Au interface. 
We chose to change the material of the etch mask from gold to aluminum (Al) to keep the 
protection layer, distinct from the etch mask, allowing different etch processes for the two 
layers with good selectivity [4]. In the following we describe the fabrication process that 
now has been established at KOSMA (Fig. 4).  

The small lateral device dimensions down to (100 x 100) nm2  for the bridge are 
patterned by Electron-Beam-Lithography (EBL) while larger features above 1 µm are 
defined using a Karl Süss contact aligner. For EBL we use a 496 K PMMA electron beam 
resist of 190 nm thickness. All metals are deposited by sputtering. After the deposition of 
the 12 nm Nb blanket layer and a protection layer of 15 nm Au the heat sinks are defined 
by EBL, sputtering of 70 nm Au and subsequent lift-off. In a subsequent Ar sputter etch 

Au etch mask 

Au heat sinks 

Nb blanket layer 

Au protection layer 
Cross Section 

Top View 

Fig. 3: self aligned fabrication process using a 
Au protection layer and Au etch mask 
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the thin Au protection layer is removed, reducing the thickness of the heat sinks by 15 nm. 
For a reproducible etch behaviour it is important to avoid intermetallic diffusion of Au 
and Nb. To this effect we introduced cooling breaks during the Au etch [Tab. 1] and keep 
the temperature for baking the PMMA at low 120 °C. 
 

 
 
 
 
 
 

 

Top View: 

 

Cross section: 
Au protection layer 

Nb blanket layer 

z-cut quartz substrate 

Au heat sinks 

Al etch mask 

 

a) Deposition of 12 nm Nb blanket  b) EBL patterning and deposition             c) Sputter etch  
layer, in-situ protection with 15 nm  of 70 nm Au heat sinks              removal of 15 nm  
Au film                     Au protection layer 

 

Top View: 
 
 
d) EBL patterning and deposition                 e) RIE removal of                     f) Removal of Al etch
 of 30 nm Al etch mask    field Nb            mask (wet etch) 
Cross section:
 
 
 
In the next step the Al strip is lift-off defined by EBL and sputter deposition. It is used as 
etch mask in the subsequent RIE to etch out the bolometer bridge by removing the 
surrounding Nb. After the definition of the bridge the Al etch mask is removed by a wet 
etch. We use AZ726 photoresist developer. RF-sputtered SiO2 is deposited subsequently 
as a protective coating to avoid degradation of the device by oxidation. The effect of 
thermal cycling on the coating is unknown. 

Fig. 4: Self-aligned fabrication process using an Al etch mask 
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Material Process Process gas Pressure Flow Power density Duration 

   [Pa] [sccm] [W/cm2] [min:sec] 
15 nm Au Sputter etch Ar 4 8 1.1 2 x 0:30 

(2:00 cooling break) 
12 nm Nb RIE CCl2F2/NF3 4 6/1.2 0.13 0:40 
30 nm Al Wet etch (AZ726)    2:00 

 
 

The advantage of this process is a very simple removal of the Al etch mask that is 
rather tolerant against thickness variations of the etch mask. Additionally, the advantage 
of using a protection layer granting an optimum transparency of the Nb/Au interface is 
retained. This process offers a high yield of 70-80 % per batch. HEBs of a similar size 
show similar RT-characteristics (Fig. 5). 

 
 

 
 
 

Tab. 1: Parameter for Au, Nb, Al etch  

Fig. 5 : RT-characteristics of similar-sized HEBs on one wafer (∅ 22 mm), nominal 
device dimensions: 240 x 200 x 14 nm3, Rsheet= 14 – 15 Ω. The spread in the R/T curves 
is probably due to small size variations of the bolometers. 
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Mixer mount and FTS measurements 
 

The diced quartz substrate carrying the device is lapped down to a thickness of 
35 nm and mounted into a fixed-backshort waveguide mixer optimized for performance at 
800 GHz [5]. Fig. 6 shows the direct response spectrum measured with a Fourier 
Transform Spectrometer (FTS). The instantaneous bandwidth from 600 to 980 GHz of the 
HEB response is determined by the waveguide of the mixer block rather than the device 
itself. 

 
 
 

Heterodyne measurement 
 

For the receiver measurements the LO-signal is superposed with the load-signal 
with a 36 µm Mylar beamsplitter. A 12 Ohm resistance is connected in parallel with the 
device. The IF-output is fed through a 50 Ohm coaxial cable to a 1-2 GHz HEMT-
amplifier. 

The device dimensions and DC characteristics are listed in table 2. 
 

Dev. Dim. TC ∆ TC IC R9K Rsheet 

[nm3] [K] [K] [µA] [Ω] [Ω] 
240 x 200 x 14 6.0 1.0 230 15 12.5 

 
 
 

Fig. 6: FTS response of bolometer in fixed-tuned 
waveguide mount 
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The device was measured at 800 and 875 GHz at intermediate frequencies from   
1-2 GHz. The bath temperature was 4.2 K. The double sideband receiver noise 
temperature was determined by a standard Y-factor measurement. The LO power 
requirement was estimated with the isothermal method [6]. Best results are summarized in 
Table 3. 

 
TRec, DSB VBias LO frequency LO power 

[K] [mV] [GHz] [nW] 
1200 0.7 804 21 
1500 0.7 875 21 

 
 

Fig. 7 shows the LO
for hot/cold measurements
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Conclusion 
 

d a reproducible self-aligned fabrication process for diffusion-
eters using Al as etch mask. The Al strip can be removed very 

 yield of 70-80 % per batch is achieved. First receiver 
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measurements resulted in a receiver noise temperature (DSB) of 1200 K at an IF of 
1 GHz. 
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