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Abstract 
 
We report on a new regime of operation of High Electron Mobility Transistor 

(HEMT) terahertz detectors, in which we apply a constant (dc) drain bias.  The measured 
responsivity increases with the drain current by more than an order of magnitude and 
saturates at the dc bias corresponding to the saturation of the dc drain current for given 
gate voltage. We link this increase in the detector responsivity to the drain bias 
dependence of the gate-to-source and gate-to-drain capacitances, which results in a much 
greater asymmetry in the boundary conditions for plasma waves.  These results confirm 
our model linking the HEMT detector response to the propagation of overdamped plasma 
waves in the device channel.  

 
 Introduction 

 
Plasma waves in short-channel High Electron Mobility Transistors (HEMTs) have 

a resonant response at terahertz frequencies [1].  The HEMTs operating in a plasma wave 
regime should respond at much higher frequencies than conventional, transit-time limited 
devices, since the plasma waves propagate much faster than electrons. We refer to such 
devices as plasma wave electronics devices.  The rectification of the plasma waves 
(linked to the asymmetry of the boundary conditions at the source and the drain) can be 
used for the tunable detection of electromagnetic radiation at terahertz frequencies.   

 
This plasma wave electronics short-channel HEMT detector produces an open 

circuit dc voltage, which is proportional to the intensity of the incoming terahertz 
radiation with a resonance response to electromagnetic radiation at the plasma oscillation 
frequency.  The resonant plasma frequency can be tuned by the gate bias, which makes 
the plasma wave electronics detector suitable for many applications involving far infrared 
spectroscopy for the detection of chemical and biological substances.  The dynamic range 
of such a detector is limited by the gate voltage swing, since the responsivity decreases 
when the terahertz radiation induced ac voltage becomes on the order of a few percent of 
gate voltage swing.  

 
 Longer HEMTs exhibit a non-resonant, broadband response to electromagnetic 

W Dang


W Dang
 

W Dang
103



  

radiation caused by overdamped plasma waves that degenerate into space charge waves 
in very long devices. Such devices can still be used as broadband detectors for 
frequencies up to several tens of terahertz.  

 
Our recent experimental data (see [2,3]) confirm many features of the theoretical 

predictions but also pose many questions.  We have demonstrated non-resonant detectors 
fabricated using AlGaAs/GaAs [4] and AlGaN/GaN HFETs [5] operating at frequencies 
below 20 GHz. More recently, we have reported on the implementation of the 
AlGaAs/GaAs terahertz HEMT detector [3,6], where the devices operated at 2.5 THz, 
which is about 30 times higher than the transistor cutoff frequency.  

 
In this paper, we report on a new regime of operation of such HEMT terahertz 

detectors that allowed us to increase the device responsivity by more than an order of 
magnitude. The motivation for this new regime comes from our theoretical analysis of the 
effect of the boundary conditions [5,7], which shows that the maximum detector response 
occurs when the asymmetry between the boundary conditions at the source and drain 
contacts of the device is the largest.  (For a completely symmetrical structure with 
symmetrical boundary conditions, we, of course, expect and predict a zero detector 
response.) 

 
Experimental Results 

 
Device Characterizations 

 
The experimental results reported in this paper were obtained using a 

GaAs/AlGaAs low noise HEMT chip  (Fujitsu FHR20X)  [8]. Figures 1 through 4 show 
the measured device characteristics.  The estimated threshold voltage for this device VT = 
-0.6 V.  The device gate width was W = 100 µm (two section of 50 µm each).  The 
estimated gate length was approximately L = 0.15 µm.  
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Fig. 1. I-V characteristics of the HEMT. The data 
was taken when only left source is grounded and 
the right source is floating.  

Fig. 2. HEMT transfer characteristics. The data 
was taken when only left source is grounded and 
the right source is floating. 
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Fig. 3. HEMT FHR20X gate leakage current versus 
gate bias. The drain source bias is 0.05 V. 

Fig. 4. Saturation drain current vs. gate bias, Isat vs 
VGS. The data are extracted from the device I-V 
characteristics shown in Fig. 1. 

 
 
Figure 5 shows the gain versus frequency of the HEMT, calculated from the 

scattering parameters taken from the Fujitsu Databook [8], where the bias condition is as 
follows: VDS = 2 V, IDS = 5 mA.  
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Fig. 5. The gain versus frequency of the HEMT. 
 
Both the device operating frequency (~18 GHz) and the cutoff frequency are 

orders of magnitude smaller than the terahertz frequency of the radiation used in our 
experiments. This makes it difficult to use lumped equivalent circuit for the interpretation 
of our experiments, even though we believe that the asymmetry in the values of the gate-
to-source and gate-to-drain capacitances still represent a crude measure of the boundary 
conditions for the terahertz signal (see our discussion below). 
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Terahertz Detection 

 
The terahertz detector was fabricated using a Fujitsu FHR20X HEMT mounted on 

a quartz substrate. The device threshold voltage is close to VT = -0.6 V, extracted from 
the measured device dc characteristics. A CO2-pumped far-infrared gas laser served as a 
source of 2.5 THz radiation.  The polarized laser beam was chopped and focused on the 
sample as shown in Fig. 6.  The induced dc drain voltage, UDS (that appeared in response 
to the THz radiation), was superimposed on the drain bias voltage (causing a dc drain 
current, IDS).  UDS was measured using lock-in technique. The detector was tuned by a dc 
gate bias, VGS, and the response was a strong function of IDS. 
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Fig. 6. Detector layout using a Fujitsu FHR20X HEMT with VT = -0.6 V, 
and (b) measurement setup with a 2.5 THz laser. The detector response - 
the dc drain voltage, UDS, was measured using lock-in technique.   
 
In the new regime of operation, we apply a dc drain bias.  The drain bias 

dependence of the gate-to-source and gate-to-drain capacitances leads to a much greater 
asymmetry in the boundary conditions for plasma waves and greatly enhances the 
detector responsivity. As can be seen in Fig. 7, the detector response, dc drain voltage, 
UDS, increases significantly with the applied dc drain current, compared with the response 
without drain current (see the inset of Fig. 7).  
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We should also notice sharp spikes in the response at the gate bias near the 
threshold for drain currents from 0.1 to 0.5 µA. These spikes were quite reproducible. 
However, at the moment we have no explanation for these peaks. 
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Fig. 7. Measured detector responses (UDS) versus gate bias (VGS) at 
different dc drain currents (IDS). Inset is the drain response without a dc 
drain current. Also shown the measured spikes in response in an expanded 
scale (left figure). 

 
We also notice that the response peaks at the gate bias somewhat below threshold 

(see Fig. 8).  This is predicted by our theory that links the reduction in the response at the 
gate bias well below threshold due to the gate leakage current  [9].  
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Fig. 8. Typical detector responsivity as a function of gate bias. The solid 
line is a first order simulation using a HEMT detector model, which is 
good also for the subthreshold regime [9]. The parameters used for the 
simulation are threshold voltage, VT = -0.52 V, ideality factor extracted 
from Fig. 2, η = 1.5, and the leakage factor, Γ = 10-3.  
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Fig. 9 shows detector response versus the drain current at different gate bias. The 
response increases with the applied dc drain current and saturates at a saturation drain 
current for given gate bias.  
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Fig. 9. Measured detector responses (UDS) versus dc drain current (IDS) at 
different gate biases (VGS) at 2.5 THz.  
 
Fig. 10 shows the gate bias dependence of the saturation currents extracted from 

I-V characterization and from Fig. 9, UDS versus IDS curve.  These results confirm our 
model linking the responsivity increase to the drain bias dependence of the HEMT 
capacitances.   
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Fig. 10. The saturation drain currents versus gate bias. The circle data are 
extracted from Fig. 9, UDS versus IDS curve.  The square data are extracted 
from the device I-V characteristics in Fig. 1, where the drain current 
saturates at certain drain bias for a given gate bias.  
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Discussion 
 

Fig. 11 shows the calculated dependencies of the gate-to-source and gate-to-drain 
capacitances for zero and -0.3 V gate bias for an AlGaAs/GaAs HEMT with parameters 
corresponding to our devices. The gate-to-source and gate-to-drain capacitance values, 
CGS and CGD, are given as  [10]: 
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where Cch is gate channel capacitance of the HEMT at zero drain-source bias,  the gate 
bias swing VGT = VGS-VT, and VDSe is the effective intrinsic drain-source voltage given 
by: 

[ ]22 )(
2
1

GTeDSdGTeDSDSe VVVVVV −+−+= . 

Here, Vd is a constant voltage that determines the width of the transition region and VGTe 
is an effective gate voltage overdrive (equal to VGT above threshold and of the order of 
thermal voltage in the subthreshold regime). The details of the capacitance model are 
described in Reference [10]. 
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Fig. 11. Gate-to-source and gate-to-drain capacitances for zero and -0.3 
gate biases: CGS and CGD versus drain bias.  Parameters used in the 
calculation: threshold voltage, VT = -0.6 V, gate width and length W = 50 
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µm and L = 0.15 µm, respectively, AlGaAs thickness, di = 25 nm, 
maximum density of the two-dimensional (2D) electron gas, nsmax = 
2.5x1016m-2.  

 
As can be seen from the Fig. 11, at the saturation voltage, which is approximately 

0.6 V in the frame of this model for VGS = 0 (0.3 V for VGS = -0.3 V), CGD is nearly zero, 
whereas CGS reaches its maximum value.  Hence, the drain bias dependence of the gate-
to-source and gate-to-drain capacitances leads to a much greater asymmetry in the 
boundary conditions for plasma waves and greatly enhances the detector responsivity. 
This asymmetry reaches its maximum at smaller drain biases for smaller (larger negative) 
gate biases (compare the curves for VGS = -0.3 V and VGS = 0 V). 

Figure 12 shows that the response saturates as a function of the drain bias at 
approximately the dc drain saturation voltage of I-V characteristics. This is in agreement 
with our data shown in Fig. 10 and with our interpretation linking this behavior to the 
enhanced asymmetry in the boundary conditions (see Fig. 11). 
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(a)        (b) 

Fig. 12. Comparison of the drain response versus drain bias to dc drain 
current versus drain bias. (a) The drain response versus drain bias curve 
was converted from Fig. 9. (b) The I-V characteristics are part of Fig. 1. 

 
 

Conclusions 
 

Our experimental data support the plasma wave mechanism of the terahertz 
detection by High Electron Mobility Transistors.  These results confirm that the gate 
leakage current does not play a role in the terahertz detection in the above threshold 
regime, since this current decreases with the drain bias.  A strong enhancement of the 
detector responsivity by a constant drain current and the saturation of this response when 
the dc drain current reaches saturation point confirm the dominant role of the asymmetry 
in the boundary conditions in determining the detector responsivity. 
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