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Abstract 
In this paper we propose to use a metal-superconductor bilayer as an RF detecting 

element for a diffusion-cooled hot electron bolometer mixer. The motivation is to 
engineer a superconducting material with a low transition temperature, Tc, (below Tc of 
commonly used Nb) and higher diffusion constant. With this it is expected to improve the 
overall HEB mixer performance, i.e. obtain lower noise and wider intermediate frequency 
bandwidth as well as reduce a local oscillator power requirement.  

We report our initial experimental results. A couple of Nb/Au bilayer films with 
different thickness combinations have been fabricated on either glass or Si substrates. 
The measured sheet resistance and transition temperature of the bilayers are close to 
those desired for the fabrication of HEB mixers. 

1. Introduction 
Development of HEB mixers for space applications is now focused on both 

optimization of the current NbN (phonon cooled HEB) [1-6] and Nb (diffusion-cooled 
HEB) [7-10] technology, as well as on investigation of alternative superconducting 
materials, which may lead to an overall improvement of the HEB mixer performance [11-
13]. The three basic parameters of HEB mixers are being addressed: sensitivity, IF 
bandwidth and local oscillator power requirement. 

As it was shown in [11], for diffusion-cooled HEB (DHEB) improvement of the 
mixer performance is expected by implementation of a superconductor with lower critical 
temperature. First, the sensitivity is improved since the intrinsic mixer noise is 
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proportional to the effective electron temperature, which is about the Tc. Secondly, for 
DHEB the LO power requirement has quadratic dependence on the superconducting 
temperature Tc. Finally, a larger diffusivity D can be expected in some of 
superconductors with lower Tc. This would lead to a shorter thermal time constant since it 
is inversely proportional to D and thus increase the intermediate frequency bandwidth of 
the mixer. 

Originally considered Al has been shown to allow for very small LO power 
requirement of the HEB [14]. However, the mixers tested in a quasioptical setup 
exhibited very low gain of about –30 dB. This was explained by the saturation in the IF 
port due to the very small optimum bias range. The IF bandwidth was not improved with 
Al based HEBs compared to Nb HEB due to the limitation imposed on the bolometer 
length because of the proximity effect of the normal cooling pads. The influence of the 
normal cooling pads on the resistive transition of Al HEB has been modeled in the limit 
of a very short superconducting bridge (order of coherence length ξ or less) [15]. 

In this paper we propose using a superconductor-normal metal bilayer as a sensitive 
element of the HEB mixer. We show that it is possible to obtain desired parameters such 
as sheet resistance and transition temperature if we choose a bilayer of Nb and Au. The 
diffusivity is expected to be higher than that of the single layer of Nb due to the presence 
of Au. Ability to tune the individual layer thicknesses to meet the requirements for 
particular applications is considered to be a significant advantage of the bilayer based 
HEB mixer.  

2. Material considerations for the bilayer 
To make a decision on which materials to use for the bilayer, the following 

requirements have been considered: 
a) Tc of the bilayer should in principle be easily tunable in a temperature range 

between 1-5 K; 
b) the desired Tc of the bilayer for the first tests is around 3-4 K since this 

temperature is compatible with 4He cryostats facilitating the lab tests. The LO 
power requirement of the DHEB mixer based on a superconductor with Tc of 
3 K is expected to be ~ 20 nW. Further reduction of the Tc would lower this 
number and may cause saturation of the mixer by the 300 K background in 
the conventional lab tests;  

c) the sheet resistance of the bilayer film should not be too small, order of 
10 Ohm/□ or larger, to match the mixer with a planar antenna; 

d) It is preferable to have a fabrication process being compatible with the 
existing clean-room technology and experience; 

e) the larger diffusivity and shorter electron-electron interaction time constant of 
both superconductor and normal metal are desired. The large diffusivity will 
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provide a wider IF bandwidth of the mixer for a given bolometer length and 
the fast electron-electron interaction favors the thermalization. 

 
Different materials have been considered and finally the combination Nb/Au was 

chosen. We expected that the bilayer with film thicknesses: dn~5 nm, ds~5 nm may meet 
the requirements mentioned above. The main parameters of the Nb and Au we used are 
listed in the Table 1. 

 
Table 1. Material parameters: vf is the Fermi velocity, ρ is the resistivity, ξ is the 
coherence length, and l is the electron mean free path. 

 
Material vf, *108cm/s ρ, µOhm cm ξ, nm l, nm 
Au 1.4 8-10 50 5 
Nb 0.27 20-25 10 3 

 
Here we estimate Tc and the sheet resistance of such a Nb(5 nm)/Au(5 nm) bilayer. 

The Tc of a bilayer can be predicted using a Golubov model [16] if the Tc of the 
superconducting layer is known. It is however known from experience that a layer of 5 
nm thick Nb can have a varying Tc, depending strongly on the sputtering condition. At 
the same time it is also not possible to determine Tc experimentally due to fast film 
oxidation (which proximitizes the superconductor as well). For our estimates we use Tc 
of 5 nm Nb being about 5-7 K. The model [16] is valid for arbitrary film thicknesses and 
interface transparencies. Initially the interface resistance was estimated as being simply a 
mismatch between the Fermi velocities vf of the normal (N) and superconducting (S) 
layers. A calculation shows that the Tc of  such a Au/Nb bilayer will be about 60 %  of 
the Tc of the Nb, in the range 3-4 K. 

To estimate the sheet resistance we have considered the N and S layers as two 
resistors connected in parallel:  
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One should note, however, that the resistivity of very thin films is not equal to the 

bulk resistivity, but includes a “size” contribution due to the scattering of the electrons at 
the film surfaces. This causes the electron mean free path to be limited by the film 
thickness.  

For a rough estimate of the Nb resistivity we took the measured value of 
15 µOhm cm for the 10nm Nb film, and estimated it to increase to about 20-25 µOhm for 
the 5 nm film. To our knowledge there is no experimental data on so thin Au films 
resistivity. The estimate in the Drude model gives a value of 2 µOhm cm with the mean 
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free path 40 nm. The thickness of our Au is smaller than that value so the “size” 
contribution to the resistivity may be large. Moreover, Au may not grow very uniformly 
likely having “island” structure in such thin films, so that the resistivity may increase due 
to this effect even further. For a crude estimate we took the resistivity of Au to be of the 
order of 8-10 µOhm cm for thickness 5 nm. With these numbers on resistivity of Nb and 
Au we expect a sheet resistance of the bilayer to be about 10-15 Ohm/□. 

3. Films fabrication and dc characterization 
Based on these considerations, the test samples on glass substrate with different film 

thickness combinations have been produced: “6/6”, “5/5”, “5/4”. The first number 
corresponds to the thickness of Nb, the second one to the thickness of Au in nm; for 
instance “6/6” means a bilayer made from 6 nm Nb and 6 nm Au. The layers were 
sputtered in situ to avoid oxidation of Nb. The samples were cut into 4 mm long and 
2 mm wide pieces. Critical temperature of the bilayers was measured by a four-probe 
method. The temperature is controlled by an electrical heater and measured by a 
calibrated germanium resistor with an accuracy of 10 mK. 

The results of the critical temperature measurements are presented in Figure 1. The 
critical temperatures of the samples made in different runs are consistent, correlating with 
the thickness combinations and lie within 3.5-4.2 K, close to the designed values and 
have a very sharp transition of about 50 mK. The sheet resistance of the films of about 
15 Ohm/□ is also in a good agreement with the predictions and large enough to match the 
bolometer to the receiver antenna. 

 
Table 2. dc parameters of the non-patterned Nb/Au bilayer films on glass substrate. 
 
Nb / Au thicknesses, nm Tc Sheet resistance at 300 K, Ohm Sheet resistance at 10 K, Ohm 

6/6 4.25 18 13 
5/5 3.5 20 16 
5/4 3.7 21 16 

 
As it was mentioned in the introduction, one of the very important material 

parameter to be considered for the DHEB mixer fabrication is the diffusion constant D, 
since it plays a crucial role in determining an intermediate frequency bandwidth of the 
device.  In case of bilayer we expect the diffusivity to be largely influenced (however not 
necessarily determined) by the diffusivity of the cleaner material, which is Au. If we use 
the Drude model to predict diffusion constant of Au, we get a number of 40 cm2/s. 
However, it is necessary to verify the diffusivity of a bilayer experimentally.  

In case of a single superconductor the diffusion constant can be estimated from the 
residual resistivity and the density of states at the Fermi level. There is also a 
straightforward experimental way to determine this parameter, namely by measuring a 
temperature dependence of the perpendicular critical magnetic field Hc2. However, in the 

W Dang


W Dang
144



 

 

case of thin films bilayer the situation is more complicated and the above mentioned 
method are not applicable a priory. We used the formalism of Fominov and Feigel’man 
[18] to model the system but came to the conclusion that in our particular case magnetic 
field measurements can not be used directly for the predictions of the diffusion constant 
of the bilayer system [19]. Instead, the microwave measurements of the impedance or 
direct measurements of the HEB IF bandwidth have to be performed. 

4. HEB mixer fabrication and dc test results 
Figure 2 shows an SEM micrograph of a Nb/Au bilayer HEB mixer using a spiral 

antenna. In this device the Nb/Au bridge with a length of 250 nm and a width of 190 nm 
is in the middle, between the antenna arms. Pads directly contacting to the bridge are 
thick Au, functioning as cooling pads for hot electrons. The structures above the cooling 
pads are the thick Nb layer as a part of spiral antenna. Due to misalignment in the 
lithographical process, the thick Nb structure locates not symmetrically with respect to 
the cooling pads. 

The fabrication process of the bilayer mixers is as following. The substrate is a 
highly resistive Si (111) wafer. The Nb/Au bilayer is sputtered on the whole wafer. Au 
cooling pads (80 nm) are formed by evaporation in combination with e-beam lithography 
and lift-off. Then, the antenna structure is realized by sputtering thick Nb (80 nm) 
followed by a layer of Au and by lift-off. The last step is to etch the Nb/Au bilayer to 
form a superconducting bridge. The etch mask used is a thin, narrow strip of Al. 

The resistance of this device is measured as a function of temperature, shown in 
Figure 3. The observed R-T characteristic resembles very much those obtained in Nb 
HEB mixers [20], characterized by two Tc’s, one corresponding to the Tc of the bridge 
(~3.5 K)  and the other to the bilayer under the cooling pads (~2 K). The normal state 
resistance is 13 Ω. The current-voltage characteristic is measured at 1.4 K, which is also 
included in Figure 3. We observe a critical current of 100 µA and also hysteresis in the 
IV curve. However, the hysteretic effect is so small that it is hard to be seen in the plotted 
IV curve. Although no detailed analysis for the R-T and I-V data is done, they can be 
further evaluated at high frequency, judging from the understanding of Nb HEB mixers.  

5. Summary  
We present a new approach for diffusion-cooled HEB mixers by using Nb/Au 

bilayer as a superconducting bridge instead of Nb or Al. We have fabricated Nb/Au 
bilayer films with different thickness combinations on glass substrate. The dc parameters 
of the films are close to the designed values. HEB mixers based on 5 nm Nb + 5 nm Au 
bilayer films on Si substrate have been fabricated and the first dc results are obtained. 
The next step is rf characterization of the mixer. 
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Figure 1. Critical temperatures of Nb/Au bilayer films with different thicknesses 

combinations. The films are fabricated on a glass substrate and are non-patterned. 
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Figure 2. SEM micrograph of a part of Nb/Au bilayer HEB mixer using spiral antenna, 
fabricated on Si substrate. In the center is the Nb/Au bridge. Two sides of the bridge are 
contacted to thick Au cooling pads. Above the cooling pads is the antenna structure with 
thick Nb(80 nm)/Au layer. The bar in the photo is 2 µm. 
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Figure 3. The resistance of the Nb/Au HEB mixer (shown in Fig. 2) as a function of 
temperature. The current-voltage characteristic at ambient temperature 1.4 K is shown in 
the inset. 
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