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Abstract 

 
The RF current distribution in the bolometer bridge is investigated by solving the 
Maxwell’s field equations analytically and by using commercial packages QuickWave-
3D  (Finite-Difference Time-Domain, FDTD Method) and Sonnet  (Method of 
Moments). The outcomes of analytical calculations and QuickWave-3D  indicate non-
uniform RF current distribution where Sonnet  results show completely uniform current 
at 2 THz. This controversial result is subject to discussion. By accepting the non-uniform 
scenario one can explain the dependence of the conversion loss on LO frequency. A 2-
dimensional device model is presented which is based on non-uniform LO power 
absorption. 
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I. Introduction 
In earlier one-dimensional models [1] RF heating is assumed to be uniform all over the 
bolometer bridge. The predicted conversion loss by such a model was far too high 
compared to measured data. Therefore a tuning factor was needed to fit the predicted 
conversion loss, receiver noise and output noise to the measured data. Recent work by 
Semenov et al. [2] has suggested a non-uniform heating across the bolometer bridge due 
to RF skin effect. 
 
Since this effect is supposed to have a large impact on the bolometer performance the RF 
current distribution in the bolometer bridge is investigated in more detail. 
 
In section II the RF current distribution in an infinite long NbN strip is calculated 
analytically. Section III presents the simulation results of various structures done by a 
FDTD package (QuickWave-3D  [3]). In section IV the effect of non-uniform RF current 
distribution on bolometer performance is discussed. Section V presents the outcome of  a 
moment method approach (Sonnet  [4]). Finally the discussion and conclusion come in 
section VI. 
 

II. RF current distribution in an infinite long resistive strip 
 
In this section we derive an analytical expression for current distribution in an infinite 
long conductor strip. Figure 1 shows a schematic top view of a long strip. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Top view of a long strip with length L and width a where L>>a 

 
 Here it is assumed that the strip is resistive and electrically very thin. This is the case in 
NbN bolometer bridge which is 5 nm thick with conductivity about 3.5×10-6 Ωm 
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The wave equation in a medium with finite conductivity is: 
 

( )EjjE
ρρ

ωεσωµ +−=∇− 2 . 
 
In our case εωσ >> . For NbN σ is about 3×105 S/m where εω is about 100 S/m at 2 
THz. So the second term on the right hand side of the above equation is negligible and 
the equation is reduced to: 
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where: ωµσjk =2 . 
 

The electric field in the strip can be written as: yxExxEE yx

ρρρ
).().( += . Since we assume 

that the strip is infinitely long, the field does not depend on y along the strip. Under this 
assumption we get: 
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Assuming that the potential is constant across the strip, requires 0=xE . So one is left 

with: 
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Solving for yE  gives: kxkx

y eCeCxE −+= 21)( . 

 
Because of the symmetry we have: )()( xExE yy +=− , so ( )kxkx

y eeCxE −+=)( . 

 
If 0I  is the total current and t is the thickness of the strip: 
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And the final result becomes: 
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Figure 2 shows the normalized amplitude of j(x) inside the NbN strip at 0.6, 1.6 and 2 
THz for 2 micron wide strip. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The current distribution along 2 micron wide NbN strip at 0.6 THz (dashed line), 1.6 THz 
(dotted line) and 2 THz (solid line). 

 
Although the expression derived here for the current distribution is different from [2] the 
plotted curves coincide very well. 
 
The above derivation is based on the assumption of an infinitely long strip to simplify the 
problem and make it possible to solve analytically. In reality the bolometer bridge is very 
short (0.2 micron), limited by two thick (80 nm) golden antenna pads. Since the current 
distribution in the thick golden antenna arms are presumably very different from what 
calculated above for NbN strip, one can speculate that the current distribution in the short 
bolometer bridge is affected by the antenna pads. Also the influence of the substrate is 
completely ignored in above calculation. 
 
In order to reveal the current distribution in the whole bolometer structure an 
electromagnetic simulator (QuickWave-3D ) was used. 
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III. QuickWave-3D  simulated results 
The first simulated structure was a simple 10 µm long, 2 µm wide and 5 nm thick NbN 
strip on a substrate with εr = 2.2. Figure 3 shows the structure and the current density 
across the strip. 
 
 
 
 
 
 
 
 
 
   (a) 
 
 

 
(b) 

Figure 3. (a) NbN thin microstrip structure and (b) the current distribution inside NbN at 2 THz. 

 
QuickWave-3D  gives the electromagnetic fields solution using Finite-Differences in 
Time-Domain (FDTD). Since the current density along the strip is proportional to the E 
field in that direction one can estimate the current density using QuickWave-3D . 
 
Secondly the bolometer structure is simulated. The bolometer bridge is 0.2 µm long, 2 
µm wide and 5 nm thick NbN strip. The gold pads are 80 nm thick. Figure 4 shows the 
schematic picture of the structure and the current density distribution inside the NbN strip 
under the gold pads and the gap. 
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(b) 
 
 
 
 
 
 

 

Figure 4. (a) Simulated bolometer structure and (b) the current distribution in NbN layer 

 
The current density in NbN strip under the gold pads is almost zero. This means that 
almost all the RF current flows in the gold as expected. Figure 5 summarizes the 
simulated and analytical results. In QuickWave there is an option that applies edge 
singularity correction. When long strip was simulated with edge singularity option on, the 
current distribution was slightly different as plotted in figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Simulated and analytically calculated results of RF current distribution in half of the 2 
micron wide NbN strip. 0 is in the middle of strip and 1 is at the edge. 

 
The RF current distribution in the NbN bolometer structure shows a strong non-
uniformity, even more than for the long NbN strip. This is an indication that the current 
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distribution in the NbN bridge is clearly affected by the current distribution in the gold 
contacts. 

IV. 2D bolometer model 
In order to estimate the effect of non-uniform absorbed LO power across the bolometer 
bridge on the conversion loss of the device, the bolometer is divided into several parallel 
strips. If the number of these parallel strips is large enough the RF current distribution on 
each of these strips is approximately uniform. So they can be modeled by a one-
dimensional hot spot model [1]. All these parallel strips share the same voltage but they 
have different resistance and different DC current because the absorbed LO power in 
each strip is different. It is also assumed that the there is no lateral current in the bridge. 
 
In order to estimate the conversion loss of such system one should first calculate the 
current and resistance of the device at certain bias voltage and absorbed LO power using 
the large signal model [1]. The absorbed LO power in each of the parallel strips depends 
on the LO frequency and the width of the bolometer. Knowing the absorbed LO power 
one can solve for the DC currents in each strip. The requirement is that the absorbed DC 
power together with the absorbed LO power in each strip should cause a resistance, 
which holds the relations: 
 

VIR ii =  for all i. 

Figure 6 shows the schematic picture of a bolometer divided in to several parallel strips. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Schematic top view of a bolometer divided into several parallel strips. 
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The resistances of the middle strips are lower than of the edge strips. Therefore the DC 
current flows more in the middle. Consequently the size of the hotspot on the edges is 
larger than in the middle. 
 
Figure 7 shows an estimated two-dimensional electron temperature profile of a bolometer 
around optimum operating point.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. 2D-electron temperature profile of a bolometer. The light color stands for high temperature 

 
Literally we can say that this is as if we have similar bolometers that are biased with the 
same bias voltage but different absorbed LO power. 
 
By solving the small signal current in each of the strips using the hotspot model [1] one 
can estimate the conversion loss of the bolometer. Our calculation shows that due to the 
non-uniform RF current distribution at 2 THz the conversion loss can be up to 6 dB 
higher that what we calculate at 0.6 THz. 
 

V. Sonnet  simulated results 
The RF current distribution was also simulated by Sonnet , which is based on moment 
method. On the contrary to QuickWave3-D , it shows uniform current distribution in the 
bolometer bridge. Figure 8 shows the simulated result at 2 THz for a 0.2 µm long, 2 µm 
wide and 5 nm thick NbN bolometer. 
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The same uniformity was observed when simulating a long thin NbN strip. Non-uniform 
current was only in thick NbN strips (100 nm). Sonnet  does not show any edge 
singularity at frequencies lower the frequency where the resistance per unit length equals 
the inductive reactance per unit length [5]. In thin NbN strip where resistance is high this 
frequency is much higher than 2 THz and the edge singularity does not appear. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. RF current distribution simulated by Sonnet . 

 

VI. Discussion and conclusion 
Non-uniformity in RF current distribution has a large impact on the performance of the 
bolometer. Our QuickWave simulated results are in agreement with analytical 
calculations indicating a strong non-uniform LO power absorption across the bolometer 
bridge at 2 THz. However Sonnet simulated results do not agree with that. Since 
QuickWave is based on FDTD 3-dimensional electromagnetic simulation and confirms 
the analytically calculated results the authors tend to believe in non-uniformity of RF 
current in the bolometer. Accordingly less degradation is expected for a device with 
smaller width when operating at higher frequencies, which is a subject of further 
investigation. 
 
Novel designs such as thin parallel bolometer strips with different antenna pads 
configuration have to be investigated to achieve more uniform RF current distribution 
and eventually decrease the intrinsic conversion loss. 
 
Rejecting the non-uniform current distribution, other reasons for observed increase of 
conversion loss by increasing the RF frequency must be found. 
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