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ABSTRACT - We are developing a heterodyne focal plane array with up to eight ele-

ments to study lines of the interstellar medium and planetary atmospheres with frequencies

of 2 THz and above. Our fabrication process utilizes selective ion milling techniques to pro-

duce Nb Diffusion-Cooled Hot Electron Bolometeric (DHEB) mixers from a bi-layer thin

film of Au/Nb deposited on a silicon substrate. A micro-bridge of 10 nm thick Nb forms the

HEB device. The first generation of devices with lateral dimensions of 100 nm by 80 nm

were fabricated at the feed of a broadband spiral antenna with a frequency response de-

signed for up to 16 THz. Harmonic multiplier sources becoming available within the next

few years should have sufficient power to provide a local-oscillator source for small-for-

mat, quasi-optically coupled arrays of these mixers. First generation devices measured at

our laboratory have demonstrated a critical temperature (Tc) of 4.8 K with a 0.5 K transition

width. These DHEB mixers are expected to have an optimum operational temperature of

1.8-2.0 K. The current four element array mixer block will ultimately be replaced by a dual

polarization slot-ring array configuration with up to eight elements.

* Publication of the National Institute of Standards and Technology, not subject to copyright.

I. INTRODUCTION

Spectral line observations have played a major role in expanding our understanding of

the interstellar medium and planetary atmospheres. Improvements in receiver design have

enabled observations at ever shorter submillimeter and far-infrared wavelengths. Improved

instrumentation justifies the construction of specialized ground-based observatories for
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submillimeter spectroscopy. The complexity and expense of the latest telescopes for both

air and space borne platforms designed for astronomical observatories (FIRST, SOFIA,

etc.), as well as space-based remote sensing of the Earth’s atmosphere (EOS-MLS), de-

mand that spectrometers perform close to the theoretical limits which imply that heterodyne

receivers need to have sensitivities close to the quantum noise limit. Heterodyne spectros-

copy is capable of providing the required sensitivity and spectral resolution over the entire

far-infrared spectral region. The development of low-noise receivers in the THz frequency

region is primarily motivated by the need for low noise and low power consumption receiv-

ers. Up until recently GaAs Schottky Barrier Diodes (SBD) were used almost exclusively

for heterodyne receivers in the THz region. THz SBD mixer technology has recently made

a transition from cumbersome whiskered diodes in corner-cube mounts to planar versions

in waveguide. Fabrication technology and material parameters limit the size of the mono-

lithic junction and therefore limit the noise temperature performance. Below 1 THz, SIS

(Superconductor/Insulator/Superconductor) mixer receivers have excellent noise tempera-

ture (only a few times the quantum noise limit). The noise performance is limited to fre-

quencies below or about equal to the superconducting bandgap frequency.

Hot Electron Bolometric (HEB) mixers, which use nonlinear heating effects in super-

conductors near their transition temperature [1], have become an excellent alternative for

applications requiring low noise temperatures at frequencies from 1 THz up to the near IR.

There are two types of superconducting HEB devices, the Diffusion-Cooled (DHEB) ver-

sion [2][3] and the Phonon-Cooled (PHEB) version [4]. The two versions differ mainly by

the cooling mechanism of the hot electrons. The devices under development here are

DHEBs with a projected Local Oscillator (LO) power requirement of less than 100 nW and

bath temperature of less than 2 K. The only practical LO source presently available is an

FIR gas laser, although solid state LO sources with sufficient amount of power are under

development and will be available in the future. The present state-of-the-art of different

THz receivers is compared in FIG. 1.

The Intermediate Frequency (IF) bandwidth for the conversion gain is determined by

the thermal time-constant (�m) of the DHEB device. The DHEB dissipates the power it ab-

sorbs by diffusion of hot electrons through the contacts. This requirements dictates that the

dimension of the device be very small in order to maximize the IF gain bandwidth. The re-

ceiver noise temperature bandwidth (BWNT) is wider than the conversion gain bandwidth

(BWG). The fact that the receiver noise temperature bandwidth is two to three times wider
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than the conversion gain bandwidth is a well-known feature of HEB mixers. For these de-

vices, the main noise process in the device (temperature fluctuation noise) yields a noise

output which falls at the same rate as the conversion gain, flattening the net receiver noise

dependence on the IF frequency.

II. DEVICE DESIGN AND FABRICATION

A quasi-optical coupling design was chosen. The focal plane array is of the “fly-eye”

configuration, with individual substrate lenses for each pixel. (Obviously, this configura-

tion is suitable only for relatively small format arrays.) The incoming energy couples to the

device through an elliptical lens 4mm in diameter, made from high-purity silicon, and a spi-

ral antenna with a maximum frequency response of 16 THz [5]. The spiral wrap angle is 20

degrees, with a nominal separation of the feedpoints of 1.2 �m. The spiral design is

self-complementary, implying an antenna impedance of 75 �. The array includes two an-

FIG. 1. Noise temperatures vs. frequency for receivers in the terahertz regime.
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tennas with 2 1/4 turns and two with 2 3/4 turns, which imply lower frequency limits of 520

GHz and 160 GHz, respectively. (These approximate frequency limits are derived from

the criterion that the antenna radius be equal to 1/4 of an effective wavelength. The radius

of the inner edge of the antenna is used for the lower frequency limit and the outer edge for

the upper frequency limit, with an additional quarter-turn left for engineering margin.) The

IF signal is coupled out of the bolometer thru a 50 � coplanar waveguide (CPW), the cen-

ter conductor of which contacts the center conductor of a microminiature K-type connector.

The CPW groundplane is common to all four array elements, and directly contacts the body

of the mixer block through an indium foil “gasket”. The four-element array configured

with lenses and spiral antennas is shown in FIG. 2. We are planning to implement a dual

polarization design with eight devices in the future.

A typical device fabrication begins with the deposition of a uniform bilayer metallic

film across a 75 mm silicon wafer which has been wet oxidized to a thickness of 300 nm.

The bilayer is composed of a 12 nm niobium base layer capped by 20 nm of gold. The films

are deposited in-situ using DC magnetron sputtering. The HEBs are ultimately formed in

the base Nb layer as the last step of the process. The gold cap layer is intended to protect the

Nb during initial fabrication steps as well as to mitigate contact resistance problems be-

tween the device and overlying metallic layers. Following the bilayer deposition, a 100 nm

thick gold layer is deposited through a photoresist liftoff mask patterned using conventional

FIG. 2. Array configuration; on the left, a conceptual rendering showing the chip with

four elements and substrate lenses nested in the mixer mount, on the right, a photograph

of the assembly.
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UV lithography. This mask defines the log spiral antennas, ground plane, and the coplanar

waveguide (CPW) feed structure to the four array elements. The gold is deposited using

thermal evaporation following a 1 minute Ar rf plasma cleaning step to treat the contact re-

gions. These steps take us through step (b) in the accompanying FIG.3.

Since optical lithography was used for the antenna deposition, the lead separation at the

feed of the antenna remains much too large (� 2 �m) for useful HEB device dimensions.

Therefore, a second contact metallization step, using E-Beam Lithography (EBL), to de-

fine the length scale of the devices was performed. Again gold lift-off is used only through

FIG.3. Device fabrication schematic.

W Dang


W Dang
 

W Dang
172



an EBL patterned PMMA mask in this case. 50 nm of Au are deposited with an electrode

separation of between 80-100 nm at the antenna feed. The deposition process is the same as

for the antenna layer.

The last few steps of the process have produced a structure, depicted in FIG.3(c),

which includes a complete antenna structure over a blanket Nb/Au bilayer. The 20 nm Au

bilayer cap is then removed in an Ar ion mill step using the thick gold as a sacrificial mask.

There is no additional patterning associated with this step. 30 nm of the antenna and contact

Au are sacrificed to clear the bilayer surface gold from the underlying Nb in the open field

areas. The ion mill process has reasonable selectivity to Au as compared to Nb (>5:1).

At this point the device has a Nb layer underlying the entire structure as evident in FIG.

3(e). This Nb must be cleared everywhere except for the final device region. This is ac-

complished in a two step Reactive Ion Etch (RIE) process. The first step uses optical lithog-

raphy to pattern a mask which protects a 6 �m � 6 �m square region centered over each de-

vice. The chip is then subjected to a SF6 RIE process to clear the Nb in the exposed field re-

gions (FIG.3(f)). The chip is then patterned one last time using EBL to leave a narrow strip

of PMMA bridging the gap between the Au contacts and protecting the final device area.

The width of this strip, nominally 80–200 nm, defines the final width of the HEB. There is a

10 �m � 10 �m window around this strip which fully encompasses the 6 �m � 6 �m Nb

patch which was protected during the first RIE step. The chip then undergoes an identical

SF6 RIE step to remove the last of the Nb. The resulting final dimensions of a typical HEB

are 100 nm length � ��� nm width � 12 nm thickness (FIG.3(g)).

Following device fabrication an elliptical Si lens is affixed to the backside of the sub-

strate. The lens is positioned within a well etched into the backside of the substrate. The

well position is registered to within �5 �m of the device using an infrared backside contact

aligner. This well is etched early in the process before device fabrication. The lens is

affixed using a low melting point wax.

III. OPTICAL LAYOUT

An apparatus for characterizing the devices and measuring noise temperature has been

constructed and is illustrated in FIG. 4. The mixer block is attached to an OFHC Cu pedes-

tal on the cooled plate of a dewar. The base temperature is below 2 K, which is needed for

Nb DHEB operation. The THz radiation enters the dewar through a quartz window and a
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reststrahl filter designed to block radiation above about 6 THz. The mixer is connected

through a bias tee and a semi-rigid coaxial cable to a commercial cooled HEMT IF ampli-

fier (L band) with a noise temperature about 5 K.

The local oscillator signal is produced by an optically-pumped far-infrared laser. The

laser is 1 m long and operates on most FIR laser lines between 30-300 �m. The polarization

of the linearly polarized EH11 output mode can be rotated or converted to circular (if de-

sired) by a polarization diplexer. The FIR laser and its CO2 pump source run sealed off, but

can be refilled with gas of any isotopic composition. Initially, tests of HEB mixers are being

done with the 15NH3 line at 153 �m. The output power of the free-running FIR laser is stable

to better than 1% over a period of several minutes, but is normally actively stabilized to

better than 0.01 % long term by a closed-loop leveling circuit. FIG. 4 shows the GaAs

Schottky diode sensor used for power control. An error signal generated from the differ-

ence between the diode output and a reference voltage is used to control the CO2 pump laser

frequency, and hence the FIR laser output power.

FIG. 4. Measurement setup for noise temperature.
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IV. RESULTS

We have successfully fabricated several devices using the method described in this pa-

per. The extreme restriction on the dimensions of the device required for maximizing the

IF gain bandwidth (and minimizing LO power requirements) were achieved in all cases,

FIG.5. (a) SEM pictures of the DHEB, (b) AFM pictures of the DHEB.

(a)

(b)
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i.e. device lengths less than 100 nm. The thickness of the Nb in all cases was 12 nm. The

critical temperatures exhibited by the devices was 4.8 K with a transition width in the range

of 0.5 K. FIG.5(a) shows SEM images of the devices including the spiral antenna, whereas

FIG. 5(b) shows AFM images of the microbolometer at the antenna feeds.
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