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Abstract 
 

Hot electron bolometer (HEB) mixer elements, based on Niobium Titanium Nitride 

(NbTiN) thin film technology, have been fabricated on crystalline quartz substrates over a 

20 nm thick AlN buffer layer. The film was patterned by optical lithography, yielding 

bolometer elements that measure about 1 µm long and between 2 and 12 µm wide. These 

mixer chips were mounted in a fixed-tuned waveguide mixer block, and tested in the 600 

and 800 GHz frequency range. The 3-dB output bandwidth of these mixers was determined 

to be about 2.5 GHz and we measured a receiver noise temperature of  270 K at 630 GHz 

using an intermediate frequency of 1.5 GHz. The receiver has excellent amplitude stability 

and the noise temperature measurements are highly repeatable. An 800 GHz receiver 

incorporating one of these mixer chips has recently been installed at the Sub-Millimeter 

Telescope in Arizona for field test and for astronomical observations. 

 

 

I.  Introduction 
 

In recent years, heterodyne receivers based on the superconductive Hot Electron 

Bolometer (HEB) mixer have begun to emerge as the instrument of choice for 

ultra-sensitive spectroscopic applications at THz frequencies. Two types of HEB mixers 

have been developed: the phonon-cooled mixer [1] and the diffusion cooled mixer [2]. In a 

phonon-cooled HEB mixer, hot electrons produced by THz photons are cooled through 

interaction with the lattice. Phonons are responsible for transferring the excess energy to 

the substrate on which the film is deposited. Until now, NbN has been the material of 

choice for this type of mixer [3]. Diffusion cooled HEB mixers, on the other hand, depend 

on the out diffusion of the hot electrons in extremely short niobium or aluminium thin film 

bridges to large metal electrodes [4].  
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 Niobium Titanium Nitride (NbTiN) has largely been developed [5] for 

Superconductor-Insulator-Superconductor (SIS) mixers which now operate beyond 1 THz.  

NbTiN is a solid solution of NbN and TiN (both B1 phase superconductiors), and it has 

properties that resemble NbN, and it is reasonable to assume that NbTiN thin films can also 

be used in phonon-cooled HEB mixers. In this paper, we report on the first successful 

demonstration of NbTiN thin film technology to low-noise HEB receivers. We present both 

laboratory and field data in the frequency range 600 – 800 GHz. 

 

 

II.  Fabrication Process 
 

We chose Z-cut crystalline quartz as the substrate material because our NbTiN HEB 

mixers are designed to work in a waveguide mount. In order to improve the quality of the 

NbTiN film, we have added an Aluminium Nitride (AlN) buffer layer. Details of the 

fabrication process can be summarized as follows: 
 

a) A 20 nm thick AlN layer is first deposited onto the crystalline quartz substrate using RF 

sputtering of Al in an atmosphere of Ar and N2. The deposition rate is 10 nm/min. 

b) The quartz substrate is then heated to a temperature of 375o C. 

c) The NbTiN thin film is deposited by DC sputtering of  NbTi alloy target in an 

atmosphere of Ar and N2. The substrate is also RF biased during this operation. 

Following a short period of pre-sputtering, the substrate is moved into the normal 

sputtering position for 6 seconds, after which the power is shut off. The deposition rate 

for thick NbTiN layers made under the same conditions is 40 nm/min. 

 
Fig. 1   Photograph of an NbTiN HEB device. The width of the element is 8 µm. The 

distance between the normal electrodes is about 1 µm. This photo is taken on an optical 

microscope looking from the back side of the quartz substrate.  
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d) The NbTiN thin film is next patterned by using Reactive Ion Etching. 

e) The normal metal electrodes, which also form the IF filters, are deposited after a brief 

ion beam cleaning of the NbTiN surface. The electrodes consist of 5 nm of titanium and 

30 nm of gold, and are patterned using a lift-off technique with optical lithography. 
 

The length of our HEB devices is about 1 µm. In order to provide a range of impedances, 

we have fabricated HEB devices of variable width, from 2 to 12 µm. Fig. 1 shows a typical 

device which is 8 µm wide. 

 

 

III. Device Characteristics 
 

 As a result of the short deposition time of the NbTiN thin film and the deposition 

process, the thickness of the film is not uniform over the whole wafer. We estimate that the 

thickness of the film is about 5 nm on average. The resistance ratio R20/R300 is typically 

1.14. The critical current density is about 1 MA/cm-2 and the sheet resistance of the 

finished device varies between 850 and 1150 Ω ⁄ �. 

 
Fig. 2   Resistance – Temperature curve of a typical NbTiN HEB device around the 

critical temperature. 
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The Resistance – Temperature curve of a typical device is plotted in Fig. 2. It can be 

seen that the critical temperature of the device is about 10 K and that the R-T curve has a 

long tail on the high temperature side. The reason for this non-ideal behavior is not yet 

understood. 

To determine the IF bandwidth of the NbTiN mixers, we have performed heterodyne 

mixing experiments with two phase-locked 600 GHz sources, one used as a signal source 

and one as an LO source. The signal power and frequency were kept constant as the IF was 

varied between 0.5 and 7 GHz by tuning the LO source and regulating the LO power to 

maintain a fixed operating point. The results are summarized in Fig. 3, where it can be seen 

that the 3-dB IF bandwidth varies with the applied bias voltage. For a bias of 1 mV, the 

measured bandwidth is 1.7 GHz. It rises to 1.9 GHz at 2 mV bias, and 2.5 GHz at a bias of 

4 mV. These values are marginally better than the data from NbN HEB deposited directly 

on crystalline quartz [6]. 

 
Fig. 3    IF Gain Bandwidth measurement of NbTiN HEB mixers operating at around 600 

GHz. The solid curves are the best fit single pole roll-off response for each bias voltage 

setting. Note that the curves are shifted vertically relative to each other for display 

purposes only. The 3-dB rollover frequencies are marked by arrows. The error of the fit is 

about 0.2 GHz. 
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IV.  Noise Measurement 
 

NbTiN mixer chips were installed in our fixed-tuned waveguide mixer block for noise 

measurement using the standard Y-factor technique. This setup has been described  

previously [7]. The IF center frequency is 1.5 GHz and the bandwidth is 100 MHz. At 630 

GHz, a 12 µm wide device gives a Y-factor of 1.65 at a bias voltage of 3 mV. Both the 

pumped and unpumped Current-Voltage characteristics, as well as the receiver output in 

response to the hot and cold loads, are recorded in Fig. 4. Note that the maximum receiver 

output power occurs at a bias voltage of 2.3 mV.  

 
Fig. 4   Current-voltage characteristics of a 12 µm wide NbTiN HEB mixer, with and 

without LO drive at 630 GHz. Also shown is the receiver IF power as a function of bias 

voltage in response to hot (295K) and cold (77K) loads. A maximum Y-factor is recorded 

at a bias voltage of 3 mV and a bias current of 115 µA. 

 

A number of 600 GHz chips have been tested. The results at 636 GHz are summarized 

in Table I. The measured data show that the performance improves as the resistance of the 

mixer is reduced. This is in line with our waveguide embedding impedance of about 40 

ohms. Also, since the optimal bias point is about 3.5 mV, the achievable IF bandwidth 

should be close to 2.5 GHz. 
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Device 
Width 
(µm) 

  
Normal 
State 

Resistance 
(Ω) 

  
Critical 
Current 

(µA) 

  
       DSB 
Noise Temp.  

        (K) 

 
Estimated 

DSB 
Conversion 
Loss (dB) 

 
 

Optimum  
Bias Point 

 

5 170 255 525 -9 3.5 mV, 65 µA 

8 110 330 445 -8 3.5 mV, 95 µA  

12 95 500 375 -7 3.8 mV, 130 µA 

12 80 600 270 -6 3 mV, 115 µA 

Table I     DC Characteristics and RF performance measured at 636 

GHz of different NbTiN HEB mixer chips. Length of device is 1 µm. 

 

 

Fig. 5   Double-side-band receiver noise temperature measured for two 600 GHz and one 

800 GHz NbTiN mixer chips. 
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The frequency response of the NbTiN mixers has also been measured for both 600 and 

800 GHz chips. Fig. 5 shows the measured noise temperature as a function of frequency for 

two 600 GHz chips and one 800 GHz chip. The results show that a sensitivity of about 10 

hν/k is achieved in the 600 GHz band. 
 

The receiver is also extremely stable and its performance is highly repeatable. Once 

the system is well aligned, amplitude fluctuations of the IF power output are very small 

over time scales of minutes. In a typical hot/cold load measurement, the measured Y-factor 

is repeatable to better than 1%. From the direct power measurements, we believe that the 

receiver amplitude stability is < 0.004. This is comparable to SIS receivers, and far better 

than most other HEB receivers. 
 

 

V.  Field Testing 
 

Last year, we deployed an NbN based HEB receiver at the Submillimeter Telescope 

on Mount Graham, Arizona for use primarily in the 800 – 900 GHz atmospheric window. 

That receiver was used in the first ground-based heterodyne detection of a celestial source 

above 1 THz [8]. This year, we have substituted the NbN mixer with an 800 GHz NbTiN 

HEB mixer. According to measurements taken at the telescope, the NbTiN receiver has a 

noise temperature of about 850 K at 810 GHz, similar to the performance of the NbN based 

HEB receivers installed on the telescope during the two previous years [6,9]. To 

demonstrate the true heterodyne performance of this NbTiN receiver, we have measured 

the emission spectra of CO (7—6) in an astronomical source, IRC+10216. The observed 

spectrum is recorded in Fig. 6. 

 

 

VI.   Conclusion 
 

NbTiN thin films deposited on crystalline quartz substrate with an AlN buffer layer 

have successfully been used in a phonon-cooled HEB mixer. The 3-dB IF bandwidth of this 

mixer is about 2.5 GHz. The mixer chips have been incorporated in a fixed-tuned 

waveguide receiver which exhibits very good noise performance in the 600 and 800 GHz 

frequency bands, close to 8 hν/k at 630 GHz. This receiver has good gain stability and is 

currently being used for astronomical observations at the Sub-Millimeter Telescope in 

Arizona.  
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Fig. 6    CO (7—6) emission spectrum recorded by the NbTiN HEB receiver at a signal 

frequency of 806.65 GHz. The astronomical source, IRC+10216, was at an elevation 

angle of 69 degrees during the observation. The total system noise temperature was 

estimated to be 7700 K and the atmospheric opacity at zenith was 1.2. The integration 

time was 4.2 minutes. 
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