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Abstract

Varactor diode multipliers are a critical part of many THz measurement sys-
tems. The power and efficiencies of these devices limit the available power
for THz sources. Varactor operation is determined by the physics of the
varactor device and a careful doping profile design is needed to optimize the
performance. Higher doped devices are limited by junction breakdown and
lower doped structures are limited by current saturation. Higher doped struc-
tures typically have higher efficiencies and lower doped structures typically
have higher powers at the same operating frequency and impedance level.
However, the device material properties are also a function of the operat-
ing temperature. Recent experimental evidence has shown that the power
output of a multiplier can be improved by cooling the device.We have used
a particle Monte Carlo simulation to investigate the temperature dependent
velocity vs. electric field in GaAs. This information was then included in a
nonlinear device circuit simulator to predict multiplier performance for vari-
ous temperatures and device designs. This paper will describe the results of
this analysis of temperature dependent multiplier operation.

I Introduction

The goal of this paper is to investigate the temperature dependent perfor-
mance of GaAs based Schottky diode frequency multipliers. The performance
of these multipliers is an important limitation on the overall performance of
submillimeter and THz imaging systems. Recent experimental evident in-
dicates that these multipliers can have improved performance with cooling.
This paper will discuss a simplified device model to investigate this temper-
ature dependence. The next section of the paper will present a temperature
and doping dependent transport model for GaAs obtained from a Monte
Carlo based transport model. The results of this model were parameterized
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to provide information for a device model. Section III describes the nonlin-
ear device circuit model used to include velocity saturation effects and the
conditions used in the multiplier simulation. Section IV presents results for
doping, temperature and frequency dependent multiplier performance. The
paper is summarized in Section V.

II Monte Carlo Modeling of GaAs Transport

The transport properties of GaAs play an important part in the operation
of high frequency GaAs Schottky barrier frequency multipliers. The velocity
characteristics in the undepleted region of the diode determine the saturation
characteristics and thus the power and the efficiency. To date, most varactor
designs have been based on room temperature heat sink operation. However,
recent measurements have shown that cooling improves the operation, so we
need a better understanding of temperature dependent transport. We have
used a Monte Carlo simulation of GaAs electron velocities vs. electric field,
doping and temperature to quantify the transport. The simulation is a simple
2 valley parabolic band approximation [1], [2]. The code includes most of the
characteristics of a more complex approach, yet is fast enough for the type
of parameter extraction needed for this study. The simulation was run for
temperatures between 150 and 450 K, corresponding to a range between a
cooled heat sink and typical higher temperature operation. The data was fit
to a velocity vs. electric field curve of the form [3].

v(E) =
µE + vsat(

E
Ep
)4

1+ ( E
Ep
)4

, (1)

where µ,vsat and Ep are fitting parameters that depend on the temperature
and doping. In the low field limit v(E) = µE and at high fields v(E) = Vsat.
Typical results are shown in Fig. 1 for a doping of 1017/cm3. The peak
velocities based on Eqn. 1 can then be collected and plotted. A plot of the
peak velocity vs. temperature and doping is shown in Fig. 2. The peak
velocities and the mobilities can be fit to equations of the form

Vpeak(T ) = Vpeak(300)(T/300)x. (2)
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Figure 1: GaAs temperature and field dependent velocities Nd = 10
17/cm3
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Figure 2: GaAs temperature and doping dependent peak velocities
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and
µ(T ) = µ300(T/300)x. (3)

These expressions can then be used in a nonlinear multiplier simulation to
investigate temperature dependent operation. We also need to model the
breakdown voltage. The breakdown voltage will depend on the doping pro-
file and the temperature. If we assume an abrupt junction and neglect the
temperature dependence, the breakdown voltage can be approximated by

Vbreakdown(Nd) = 60(Nd/1016cm−3)y. (4)

This expression is shown in Fig. 3. We can use this material information to
investigate device operation.

III Multiplier Modeling

The next step is to simulate multiplier performance for a variety of operat-
ing temperatures, frequencies and powers levels. We need a device model
that takes velocity saturation effects into account. These effects were first
described by Kollberg et.al. [4] A simple physical model for this effect based
on separating the structure into an abrupt depletion layer and an undoped
epitaxial layer with transport in the bulk determined by a velocity vs. elec-
tric field curve was described by East et.al. [5] This model has been used in
a nonlinear circuit simulator to investigate devices under different operating
conditions.

We need a way to compare devices for a range of operating conditions. How-
ever, the multiplier performance will strongly depend on the bias point, the
frequency and the embedding impedances. We need a consistent compari-
son. In this paper we fix the input Q of the circuit. This in effect sets the
type of operation, with lower Q devices acting more like nonlinear resistors
and higher Q devices acting more like nonlinear capacitors. With a fixed
source impedance, the device can be tuned to match the circuit, rather than
the more conventional approach of designing a circuit around a given diode.
Adjusting the device area scales the impedance level and adjusting the bias
changes the ratio of the input real and reactive impedance. The combina-
tion inside an optimization loop can adjust the nonlinear input impedance
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to match the source impedance. The harmonic load will also effect the in-
put impedance and efficiency of the multiplier. The device harmonic output
impedance will conjugate match the harmonic load. We need to search the
output impedance plane to find the embedding impedance that produces the
highest efficiency for a given input power. This search becomes the inner
loop in the simulation. The outer loop is the available local oscillator power.
The input parameters of the simulation are the epitaxial layer doping and
length, the frequency, the device breakdown voltage, the peak velocity, the
mobility and a local oscillator power step. The simulation loops through the
code increasing the available power until the maximum voltage across the
semiconductor depletion layer becomes larger than the breakdown voltage.
The outputs of the simulation are the pump frequency input impedance as
a check on the convergence of the simulation, the output power and effi-
ciency, the optimal output embedding impedance, the device area and bias
and useful internal parameters such as the peak electric field in the bulk and
the peak depletion layer voltage. The simulation can use the temperature
dependent velocity characteristics described in the last section to investigate
the temperature characteristics of multipliers.

IV Temperature, Doping and Frequency Dependent Performance

Before we investigate temperature dependent multiplier operation, we first
consider constant temperature characteristics. The first example is a multi-
plier operating with an input frequency of 50 GHz with a peak velocity of
1.6 × 107cm/sec corresponding to an operating temperature of 300 K and
an input impedance of 50 + j100. Fig. 4 shows the efficiency vs. available
input power and Fig. 5 shows the output power for a range of epitaxial layer
dopings. These two figures show many of the design tradeoffs in multipliers.
For this 50 GHz room temperature operation, the 3 × 1016/cm2 device is
operating in velocity saturation . The multiplier efficiency decreases over the
entire operating range. Increasing the doping to 4 × 1016/cm2 reduces the
saturation effects. The 6 × 1016/cm2 device is showing little saturation and
is operating with a nearly constant efficiency over it’s entire operating range.
The corresponding power plot shows the effect of the breakdown voltage on
the power output. The lower doped structure have a larger breakdown volt-
age and can support a larger input power before breakdown, nearly 300 mW.
However, the larger input power doesn’t produce a larger output power due
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to to effiency reduction caused by velocity saturation. The 4 × 1016/cm2

device is operating near the onset of saturation. It’s efficiency is decreasing
at higher drive levels, causing the output power to nearly saturate at higher
drive levels. The higher doping level reduces the breakdown voltage and the
corresponding input power, but this structure produces the most power of
the 3 cases in this figure. Finally, the 6×1016/cm2 device, with the best effi-
ciency of the group, is limited by it’s smaller breakdown voltage to an input
power of 100 mW. It’s peak output power is similar to the lowest doped case.
Further increasing the doping will reduce the breakdown voltage and allow
the device to operate without saturation effects. This will have only a small
effect on the efficiency but will further reduce the output power due to the
reduced breakdown voltage and input power.

Next lets consider the effect of varying the temperature. Consider a mul-
tiplier doped at 3 × 1016/cm3operating with an input frequency of 50 GHz
and a source impedance of 50+j100. The operating temperature varies be-
tween 100 and 400 K with a variation in the saturated velocity, given by
Eqn. 2, ranging between 1.4 and 2.5×107 cm/sec. This design showed strong
saturation effects in Figs. 4 and 5. The resulting temperture dependent
efficiency is shown in Fig. 6. This device shows a strong temperature de-
pendent performance. At 300 and 400K the multiplier is strongly saturated,
with efficiencies that are monotonically dropping with pump power. De-
creasing the temperature from 300 to 200K, with a corresponding increase
in the saturated velcoity from 1.6 to 1.9 ×107cm/sec improves the efficiency
at the peak pump power point from 10 to 20%. An additional decrease in
the temperature to 100K increases the velocity enough to eliminate most of
the saturation effects. The efficiency is nearly constant with pump power.
These efficiency variations will have a strong effect on the available power
from the multiplier. The temperature dependent output power is shown in
Fig. 7. The 100K device can produce more than 4 times the power of the
room temperature structure.

This improvement in power and efficiency at lower temperatures occurs be-
cause the higher saturated velocities at lower temperatures can support more
current. An example of a structure that does not have much improvement at
reduced temperatures is shown in Fig. 8. This is the optimal room tempera-
ture device from Fig. 4. This device has a large enough doping to support the
cuurent at room temperature. Lowering the temperature will increase the

W Dang


W Dang
345



0 5 10 15 20 25 30
2

4

6

8

10

12

14

16

18

20

doping (1016/cm3)

B
re

a
k
d

o
w

n
 V

o
lt
a

g
e

Student Version of MATLAB

Figure 3: GaAs Junction Breakdown Voltage vs. Doping
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Figure 4: Doping Dependent Efficiency for F=50 GHz, T=300, Zin=50+j100
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Figure 5: Doping Dependent Power for F=50 GHz, T=300, Zin=50+j100
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Figure 6: Temperature Dependent Efficiency for F=50 GHz,Nd = 3 ×
1016/cm3, Zin=50+j100
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Figure 7: Temperature Dependent Power for F=50 GHz,Nd = 3× 1016/cm3,
Zin=50+j100
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Figure 8: Temperature Dependent Power for F=50 GHz,Nd = 6× 1016/cm3,
Zin=50+j100
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saturated velocity, but the additional velocity is not utilized by the device,
so there is only a modest improvement in the efficiency at the lower tempera-
ture. This device is limited by it’s breakdown voltage, and the higher current
available at lower temperatures gives only a small performance improvement.

Similar temperature and doping dependent calculations were carried out for
input frequencies of 100 and 200 GHz. The resulting power vs. frequency at
room temperature and 100 K is plotted in Fig. ??. The figure shows that a
properly designed low temperature device can produce approximately twice
the power of a room temperature one.

V Summary

This paper has discussed the results of a frequency dependent investigation
of multiplier performance. The results show that the temperature dependent
peak velocity plays an important role in performance. The optimal design
depends on the tradeoff between current saturation and breakdown and the
design for peak power can be different than the peak efficiency design. The
power and efficiency also depend on the temperature. Reducing the tem-
perature increases the peak velocity and can change the mode of operation.
Devices designed for room temperature operation can have modest improve-
ment with reduced temperature. A device that is current saturated for room
temperature operation can greatly improve it’s performance with cooling.
The difference in output power for a well designed room temperature device
and a corresponding low temperature design can be as much as a factor of 2.
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