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Abstract 
 
Reflection properties of several commercial absorbers measured at frequencies of 200, 
300, 400, 500, and 600 GHz with different incident angles are presented in this paper. 
The measurements were done using a specially built test setup with a vector network 
analyzer and a linear scanner. The presented results show the measured peak reflectance 
values, i.e., the maximum reflection from the object. The reflectance requirement for 
absorbers used in compact antenna test ranges (CATRs) is usually –40 dB for all incident 
angles. According to our measurements, this is not possible with the tested absorbers over 
the whole frequency range.  
 
1. Introduction 
 
High quality radiation absorbing materials (RAM) with reflectivities below –40 dB are 
needed for antenna test ranges operating at submillimeter wavelengths [1]. This limit is 
chosen to allow low enough added fields in the quiet-zone region. If the antenna needs to 
be measured pointing directly to the back-wall, even lower absorber reflectivity is 
required. Conventional carbon-loaded convoluted and pyramidal foam absorbers do not 
provide the necessary absorption performance. A large-sized antenna test range, like the 
compact antenna test range (CATR), needs very large quantities of absorbers.  
 
MilliLab (HUT Radio Laboratory) is developing a submillimeter wavelength CATR 
facility using a planar hologram in a contract for the European Space Agency (ESA) 
[2,3]. This CATR is planned for testing reflector antennas in the 1.5 meter class at 
frequencies of 300–650 GHz. It is desirable that one type of absorber can cover the whole 
operational frequency range. In this paper, the measured reflectances for several 
commercial absorber types at different incident angles and polarisations over the 
frequency band of 200–600 GHz are presented. 
 
2. Tested absorbers 
 
The tested absorbers (FIRAM-500, TERASORB-500, TK THz RAM, Eccosorb LS-22) 
are based on different materials. FIRAM-500 is made of iron oxide loaded silicon [4], 
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TERASORB-500 of carbon loaded EVA (ethylene vinyl acetate) plastic [4], TK THz 
RAM of carbon loaded polypropylene plastic [5], and Eccosorb LS-22 of carbon loaded 
polyurethane foam [6]. FIRAM and TERASORB panels have a wedged-type surface 
design, TK THz RAM a sharp pyramidal surface, and the Eccosorb surface is flat. 
Eccosorb LS-22 is designed for operation below 30 GHz, but it was tested just like the 
others. Reflectivity results for other absorber types in the 100–200 GHz range can be 
found in [7]. 
 
3. Instrumentation and test procedures 
 
The test instrumentation was built around a millimeter wave vector network analyzer AB 
Millimétre MVNA-8-350 equipped with submillimeter wave extensions ESA-1 and ESA-
2 [2]. The source ESA-1 consists of a phase-locked Gunn oscillator and a frequency 
multiplier. The receiver ESA-2 has a similar phase-locked Gunn oscillator which acts as 
the local oscillator for a sensitive waveguide-type Schottky mixer. Fixed positions of the 
transmitter and receiver modules were used for precise alignment of the angle and to 
ensure good repeatibility.  
 
The test setup is shown in Figure 1 for vertical E-field polarisation. A photograph of the 
test setup is presented in Figure 2. The used incident angles of οοο 63.4 ,45 ,26.5=iθ  were 

chosen for easing precise alignment on the optical table. Alignment guides were mounted 
to the optical table and then the transmitter and receiver modules were fixed to the 
guides. In the ο4.63=iθ  measurements, a thick absorber sheet between the transmit and 

receive antennas was used to reduce direct coupling due to antenna sidelobes (see Figure 
2). Direct coupling between the antennas without the target was tested to be always 
below –70dB or the measurement noise floor (whichever higher).  
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Figure 1. Schematic drawing of the test instrumentation. 
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Figure 2. Photograph of the test setup. 
 

 
 

Figure 3. Amplitude data from the network analyzer (300 GHz, 45 degrees and H-H pol). 
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The flat metal plate used for calibration and the tested absorbers were mounted to a linear 
scanner. The distance of the test object (d in Figure 1) was varied a few wavelengths 
around its center value determined by geometry. The measured reflected powers have 
clearly periodical patterns, as can be seen from Figure 3, due to field scattering from the 
target. At least ten averaged amplitude and phase values were taken for each wavelength 
in the reflectance measurements.  
 
The surface area illuminated by the incident beam is relatively small and the reflectance 
results depend on the position of the absorber. To find out the effect of this, the absorbers 
were tested in three different mounting positions along the x-axis.  
 
Accuracy of the reflection measurement depends on the analyzer dynamic range, which 
degrades with increasing frequency (from about 100–60 dB at 200–600 GHz). The 
amplitude measurement accuracy for both vertical and horizontal polarizations at 200–
400 GHz is estimated to be ± 0.1 dB, and about ± 0.5 dB at 500–600 GHz. 
 
4. Measurement results 
 
The reflected power from a flat aluminium plate was measured first for each incident 
angle. After that, the reflected powers from different absorbers were measured. The 
presented absorber reflectivity dB-values in this paper are all relative to the reflectivity of 
the flat plate. They show the highest measured reflectivity, i.e., the worst performance 
over three subsequent linear scans with the absorber mounted in different position. For 
the wedged-type absorbers FIRAM-500 and TERASORB-500 the results are given for 
both vertical (gv) and horizontal (gh) groove directions. 
 
The measured and calibrated absorber reflectivities for οοο 63.4 ,45 ,26.5=iθ using 

vertical and horizontal polarizations are shown in Tables 1 and 2, and also presented in 
Figures 4–6. The lowest measured reflectivities for each test are printed in bold in Tables 
1 and 2. Reflectivities of even the best absorbers are always higher than –40 dB. The 
measured reflectivity values increase with larger incidence angles. The frequency 
dependence, however, is not so clear. FIRAM-500 and TERASORB-500 materials are 
specifically optimized for 500 GHz, and they clearly have better performance in the 400–
600 GHz range than in the 200–300 GHz range. In the lower frequencies TERASORB 
has somewhat lower reflectivities than FIRAM, but in the 400–600 GHz range the results 
are quite similar with both groove directions. TK THz RAM has the lowest reflectivity in 
almost all angles and frequencies. Eccosorb LS-22 has the worst performance, as can be 
expected for a standard microwave absorber intended for frequencies well below 30 GHz. 
 
5. Conclusions 
 
The reflectivities of several commercially available absorbers have been measured at 
200–600 GHz. The measurements were carried out with incident angles of 

W Dang


W Dang
386



οοο 63.4 ,45 ,26.5=iθ . The results presented in this paper show the measured peak 

reflectivity values taken over three different positions of the absorbers. The reflectivity 
requirement for high performance compact ranges is usually –40 dB in all angles of 
incidence. This is clearly not yet  possible at submm-waves with commercially available 
materials. TK THz RAM manufactured by Thomas Keating Engineering Physics, Inc., 
was found to have the best overall performance in the tests.  
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Table 1. Reflectivity measurement results for vertical-vertical polarization   
   (values in dB relative to the flat-plate reference).  

 
Table 2. Reflectivity measurement results for horizontal-horizontal polarization  

   (values in dB relative to the flat-plate reference). 

26.5 deg vertical-vertical
f (GHz) firam gv firam gh terasorb gv terasorb gh tk thz ram eccosorb

200 -21.7 -26.2 -21.3 -29.5 -34.6 -13.2
300 -25.2 -27.7 -23.5 -32.6 -33.4 -14.6
400 -23.5 -32.4 -27.9 -27.9 -32.4 -18.8
500 -21.4 -27.6 -25.3 -24.8 -28.5 -10.7
600 -25.2 -25.7 -25.3 -25.7 -29.5 -22.7

45 deg vertical-vertical
f (GHz) firam gv firam gh terasorb gv terasorb gh tk thz ram eccosorb

200 -17.8 -24.7 -17 -27.3 -35.5 -12.4
300 -19.5 -27 -16.3 -30 -31.1 -14.4
400 -19.7 -29.7 -21.8 -26.3 -31.9 -18.8
500 -20.7 -24.7 -28.3 -23.8 -27.8 -9.9
600 -22.8 -24.6 -24.2 -21.9 -28.1 -16.5

63.4 deg vertical-vertical
f (GHz) firam gv firam gh terasorb gv terasorb gh tk thz ram eccosorb

200 -14.2 -18.2 -12.7 -22.3 -20.1 -9
300 -12 -16.7 -9.55 -19.9 -20.1 -7.3
400 -10.6 -20.5 -12.7 -22.3 -20.5 -11.7
500 -9.7 -19 -12.7 -17.7 -18 -12.6
600 -14.4 -18.5 -15.4 -16.9 -24.9 -13.7

26.5 deg horizontal-horizontal
f (GHz) firam gv firam gh terasorb gv terasorb gh tk thz ram eccosorb

200 -31.5 -27.1 -30.4 -25.3 -33.1 -17
300 -31.5 -28.6 -37.4 -28.5 -39.1 -19.3
400 -33.1 -30 -30.7 -28.5 -35 -25.9
500 -28.3 -25.4 -30.6 -24.6 -25.3 -17.3
600 -24.9 -23.5 -25.7 -24.5 -26.9 -17.2

45 deg horizontal-horizontal
f (GHz) firam gv firam gh terasorb gv terasorb gh tk thz ram eccosorb

200 -23.5 -23.9 -24.5 -23.7 -18.5 -19.6
300 -33.6 -30.4 -25.4 -27.9 -33.4 -20
400 -34.7 -28.2 -30.6 -30.9 -35.6 -24.5
500 -29.5 -25.3 -30.1 -28.5 -30.4 -20
600 -25.8 -28.1 -28.8 -33.2 -30.4 -21.8

63.4 deg horizontal-horizontal
f (GHz) firam gv firam gh terasorb gv terasorb gh tk thz ram eccosorb

200 -16.8 -18.7 -15.4 -18.7 -12.4 -20.4
300 -15.4 -16.3 -12.8 -15.9 -22 -16.3
400 -12 -21.3 -15.6 -18.1 -16.2 -15
500 -14.6 -20.8 -17.6 -21.6 -19.4 -14.4
600 -19.8 -23.4 -19.4 -24 -25.7 -18.7
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Figure 4. Measured reflectivities for θI = 26.5 degrees. 
 
   
 
 
 
 
 
 
 
 
 
    
  
 

Figure 5. Measured reflectivities for θI = 45 degrees. 
      
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Measured reflectivities for θI = 63.4 degrees. 
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