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Abstract 
We have constructed a 4-channel receiver at 810 GHz for use on the Antarctic 
Submillimeter Telescope and Remote Observatory located at the South Pole (AST/RO). 
The array was assembled and tested at the Steward Observatory Radio Astronomy Lab 
(SORAL) and then installed on AST/RO in November-December 2000.  In this paper we 
describe the instrument and its performance both in the lab and on the telescope. 

Introduction 

The cold, dry conditions at the South Pole, coupled with its relatively high altitude 
(~10,500 ft) make it an excellent location for observations at submillimeter wavelengths. 
The Antarctic Submillimeter Telescope and Remote Observatory (AST/RO) with its  
1.7 m aperture was designed and built to take advantage of these conditions (Stark et al 
2001). Figure 1 shows a CO J=4→3 image of the giant molecular cloud NGC 6334 made 
with AST/RO. CO J=7→6 and [CI] spectra toward the same object are also shown. These 
are  ‘first light’ data taken in the middle of the Antarctic summer with a dual channel, 
460/810 GHz receiver system built by our team a few years ago. Much higher 
atmospheric transmission is routinely available in the winter. These almost ideal 
atmospheric conditions and the resulting observing efficiency available from the South 
Pole motivated us to build an 810 GHz array for use on AST/RO.  Figure 2 is a 
photograph of the receiver ‘front-end’ as it appeared in the lab before deployment.  
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Figure 1 

 

 
 

Figure 2: PoleStar frontend and control electronics during testing at SORAL. 
 
Pole Star Optical Design 

The purpose of the optical system is to reimage AST/RO’s focal plane onto a compact 
2x2 array of lenses located in the array cryostat and to efficiently inject local oscillator 
power into each mixer. Focal plane reimaging is achieved by a pair of parabolic mirrors 
and two flats (Figure 3). Each AST/RO beam expands from the focal plane located ~900 
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mm above the receiver pallets on to the first offset parabola (P1). P1 collimates the beams 
and conveys them via two flats to the second parabola (P2). P2 focuses and re parallelizes 
the beams so that they arrive at the mixer lenses with the correct size and placement. The 
beam ‘footprint’ of the array on NGC 6334 is shown in Figure 1 (open circles). Each 
diffraction  limited, half-power beam diameter is ~54”. 

 

 
 

Figure 3 
 
 The local oscillator for the array is a single oscillator (J. Carlstrom) and  multiplier 
(Erickson & Narayanan). A quasi-optical LO power divider (Figure 4)  is used to split the 
focused, 42 µW LO beam into 4 equal parts. The power dividing is accomplished by two, 
low-loss, ~50% crystalline quartz beamsplitters. Each beam splitter is paired with a flat 
mirror to give the emerging beams the proper horizontal and vertical offsets. After 
including all loss mechanisms, we estimate that 18% of the incident LO power is in each 
LO beam at the output of the power divider. The LO polarization is orthogonal to the 
signal beams.  The four beams are then injected into the ‘sky’ signal path by a high 
quality wire grid. A Martin-Puplett interferometer then rotates the LO beam polarization 
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to match that of the sky and directs them into the cryostat. A 2x2 array of HDPE lenses 
then focuses the beams into the mixer feedhorns.  
 

 
 

Figure 4: PoleStar’s quasioptical LO power splitter. 
 
Pole Star Front-End Design 

 

Cryostat 

The Pole STAR cryostat (Figure 5) was constructed by Precision  Cryogenics and is 
based on the successful CSO hybrid design. It uses a CTI model 350 coldhead to cool the 
outer and inner radiation shields to ~77 and ~12 K, respectively and a 4 liter liquid 
helium can to maintain the mixers at their operating temperature. This same basic design 
is used for all AST/RO and CSO receivers. In the single pixel AST/RO receivers, 30.5 
mm diameter, Teflon coated, crystalline quartz windows are used at 300 and 77 K. Zytex 
is used as the IR filter on the 12 K radiation shield. With a good vacuum, hold times of 
~6 days can be achieved. With Pole STAR, we have 4 such apertures to contend with in 
the same cryostat. Furthermore, Teflon coated, crystalline quartz windows are difficult to 
obtain and the emerging beams from our close-packed  lens array makes it impossible to 
fabricate 4 independent vacuum windows. At 77 K, we have simply substituted an 
additional layer of Zytex for the 50 mil quartz windows. For the 300K vacuum window, 
we are using a 7.62 mm thick disk of HDPE in which 4 cylinders with the diameter of the 
emerging beams have been milled out to a depth of 6.65 mm  (see Figure 6). The 
membrane thickness at the bottom of the cylinders corresponds to 4 lambda at 370 
microns. The machining of these windows leaves behind a thick cross member structure 
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which helps keep the window from collapsing under atmospheric pressure. The 
absorption loss through the window is estimated to be <5%. With all 4 mixers and 
amplifiers mounted in the cryostat, the measured hold time is ~3 days.  The holdtime is 
much better than expected based upon the optimum performance of the single pixel 
receivers. This was achieved by doing away with the ‘vent’ tube normally used in these 
cryostats. In the lab we have found that without the vent tube, the fill line is LESS likely 
to ice up, most likely due to the increased back pressure of helium gas. 
 

 
 

Figure 5: Layout of PoleStar array cryostat. 
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Figure 6: HDPE vacuum window for PoleStar. 
 
Mixers 
The SIS mixers used in PoleStar were made by KOSMA. Each mixer uses a Potter horn 
with a circular to ½ height waveguide transition to couple radiation to a Nb SIS junction. 
The junctions achieve low noise (~450 - 650K) performance through the use of an on-
substrate Al tuning structure and a fixed waveguide backshort. The mixers have 
embedded magnets to suppress the Josephson effect. A four-wire bias system is used to 
ensure stable operation of the mixers.  
 
Pole Star IF Processing 
Figure 7 provides a global schematic of the IF processing in Pole Star. The 1.5 GHz 
output of each mixer is amplified ~30 dB by a low-noise, 1-2 GHz amplifier mounted to 
the cryostat’s 12 K radiation shield (Figure 5). The amplifiers are balanced and have a 
Lange coupler on their input, effectively eliminating the need for an isolator. Each signal 
is then amplified an additional 35 dB by  room temperature Miteq amplifiers mounted on 
the dewar frame. 
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Figure 7 
 
After passing through a 3.6m cable run the array IFs enter a 4-channel total power box. 
The total power box provides 60 db more amplification and contains a bandpass filter and 
crystal detector that permits the total power of each receiver channel to be measured 
either manually or under computer control. Once through the total power box, the 4 IFs  
enter an up/downconverter box which translates the 1.5 GHz IFs to 14.5 GHz and then 
down to 2.075 GHz, the center frequency required by the array Acousto-Optical 
Spectrometer (aAOS) (see the next section). 
 
Pole Star Array AOS 
The Array AOS (aAOS) built by KOSMA provides four independent spectrometer 
channels, each with ~1 MHz of spectral resolution over a 1 GHz bandwidth. At 810 GHz, 
these numbers  translate to 0.37 and 370 km/s respectively.  It uses a single laser, a         
4-channel, lithium niobate Bragg cell, and a custom CCD to achieve its performance  
parameters. The aAOS has been successfully tested on the IRAM 30m and  CSO.            

 

Pole Star Bias Control 

 

Hardware 

The SIS junctions, the electromagnets used to suppress quantum-generated mixer noise, 
and the Low Noise Amplifiers (LNA’s) all require noise-free, accurate electrical biasing 
for reliable operation. On single-pixel receivers, providing the appropriate biasing 
voltages and currents is handled adequately by individual boxes with manual 
potentiometers and LCD panels on the front. With the advent of array receivers, however, 
the sheer number of boxes required makes this kind of control impractical.  The PoleStar 
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bias system uses proven circuit design used on single pixel receivers at AST/RO and the 
Henrich Hertz Telescope.  We replace the manual potentiometers in these designs with a 
Xicor digital potentiometer, and package 4 channels of bias on a single Euro 96 card.  
These modular 4 channel cards can be plugged into a backplane in a 19” equipment rack, 
allowing easy extensibility to more channels.  All digital communications with the bias 
system are done through a bi-directional optically isolated connection with the control 
computer.  The I2C bus used for digital communications has a separate clock line.  The 
digital lines, including the clock, are only active when changing a bias setting.  The 
voltages and currents for the SIS junctions, magnets and amplifiers, the total power from 
the 4 channel total power box and the cryostat temperature information are read through a 
A/D card in the control computer.  Signals from the bias system are multiplexed with 
Burr-Brown analog mulitplexers, and read through a single BNC output.  This design 
eliminates any clocks or digital signals in the bias rack except when changing to a new 
bias value.    
 

A block diagram of our bias control system is shown in Figure 8. This design can support 
up to 16-channels with no modifications, and is extensible to over 100 channels in its 
current configuration using a single control computer. 
 

 

 

Figure 8 
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Software 

The philosophy of compactness and flexibility, seen in the design of the computer 
controlled bias electronics, carries into the software design as well. The I2C signals 
needed by the electronics is generated at the parallel port of an otherwise normal rack-
mounted PC running the Linux operating system. The excellent documentation of system 
internals, tight use of system resources, remote accessibility via X-Windows, and free 
compilers and programming tools make Linux an excellent choice for this design. An 
Intelligent Instrumentation PCI-20428W multi-purpose Data Acquisition (DAQ) card is 
used for non-I2C control of the instrument. 
 

The actual array software is highly modular and the source code, written in C and 
supplemented by Perl CGI is nearly independent of the hardware.  The actual graphical 
user interface takes advantage of the open source, popular and highly capable GTK+        
X-Windows toolkit. All bias control functions can be accessed remotely. The mixer bias 
control window is shown in Figure 9. The current Pole Star PC is powered by a 75 MHz 
AMD K5 processor, comparable to a 75 MHz Pentium, and with “only” 32 MB of RAM. 
 

 
 

Figure 9: SIS bias control window on PoleStar 
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Pole Star Performance 

 
Receiver Noise Measurements 

Figure 10 shows the LO pumped IV curves of each of the 4 mixers together with IF 
power sweeps. The red curve shows the IF power output when a HOT (290K) load is 
placed in front of the receiver. The blue curve shows the response with a COLD (77K) 
load . When the system performance was optimized for each channel in the lab, a Y-
factor of ~1.2 was achieved for receivers channels 1, 2, and 3, Due to a small 
misalignment of the mixer’s feedhorn (later corrected), a Y-factor of 1.12 was achieved 
on channel 4.  A Y-factor of 1.2 corresponds to a receiver noise temperature of ~970K 
and includes all loss (optics, windows, Martin-Puplett, IF amp, etc.) in the system. 

 
 

Figure 10: PoleStar receiver performance curves. 
 

These receiver noise temperatures are about a factor of two higher than those obtained 
with the same mixers in a laboratory receiver system at KOSMA. In the KOSMA 
measurements reflective optics and a Mylar vacuum window and LO beamsplitter were 
used. We estimate the HDPE mixer lens and vacuum window used in Pole STAR add 
≤100 K to the receiver noise temperature.  The balance of the receiver noise temperature 
appears to come from optical loss in the Martin-Puplett LO diplexer. Due to the long path 
lengths and relatively large beamwaists required by the array, a loss of 3 dB in the 
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Martin-Puplett can occur if there is as little as ~0.5° tilt in the entrance beam. With a 
single pixel system, it is often possible to adjust the relative position of the Martin-
Puplett and receiver cryostat to compensate for small alignment errors. When dealing 
with multiple pixel systems this is much more difficult to do. Indeed, when all 4 receiver 
channels were optimized for simultaneous operation in Pole STAR, walk-off effects in 
the Martin-Puplett added an additional ~3 dB of optical loss. These results suggest that 
the implementation of Martin-Puplett diplexers for large format arrays may in practice be 
problematic. If a narrower operational bandwidth and some loss (~3 dB) in LO power can 
be tolerated, a better approach may be to use a thin (~3 mm) silicon etalon (Mueller 
2001) as an LO diplexer.  The small path lengths through such a silicon beamsplitter 
would minimize the adverse effects of small optical misalignments.     
 
Receiver stability measurements on Pole STAR were made by monitoring the IF output 
power of 2 of the receivers over ~1000 sec. The IF power variation was about 1 part in 
1000 over this period.  
 
Beam Pattern Measurements 

A computer controlled antenna test  range was constructed to measure the 4 Pole STAR 
beams. We used a liquid  nitrogen load with a 10 mm aperture as the signal source. The 
signal was chopped and synchronously  detected using a lock-in amplifier  connected to 
the receivers’ total  power output. Maps of the 4-beams and their relative placement are 
shown in Figure 11. To within the measurement errors the beams have the right size and 
shape. One beam (from Mixer 3) had  a small squint angle compared to the others. On 
warm-up, the horn on this mixer was found to be out of alignment and was readjusted. 

 
Figure 11: PoleStar beam patterns. 
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First Light on AST/RO 

Pole STAR was installed on AST/RO during a 3 week period from mid November to 
early December 2000. Figure 12 shows the First Light spectra obtained toward NGC 
6334. Two CO J=7→6 and [CI] lines were observed.  Pole STAR will remain at the Pole 
and be used for astronomical observations later this year. 
 

 
Figure 12: First light spectra taken with PoleStar at AST/RO. 

 
Summary 
We have constructed a 2×2, 810~GHz array receiver for the AST/RO telescope. The 
array utilizes a common set of reimaging optics, an efficient 4-way quasi-optical LO 
power splitter, a solid-state LO, low noise mixers, a flexible computer controlled bias 
system, and an array AOS. The system is modular, permitting upgrades to be made  as 
new technologies become available.  
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