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Abstract 
The non-linear quasiparticle tunnel current flowing in a distributed 

superconductor-insulator-superconductor (SIS) transmission line resonator has been 
exploited in a low-noise heterodyne fixed-tuned waveguide receiver in the 600 GHz band. 
The mixer employs two half-wave or full-wave distributed SIS long junctions connected in 
series. These devices have been fabricated with optical lithography. Preliminary results 
show that a noise temperature of 240 K is routinely obtained at around 600 GHz. The best 
double-side-band receiver noise temperature measured so far is 161 K at 597 GHz. The 
achieved RF bandwidth is only about 5 % and the center frequency of the resonance is also 
shifted towards lower end of the target frequencies. 
 
I. Introduction 

Distributed mixer based on the nonlinear quasi-particle tunnel current in a 
superconductor-insulator-superconductor (SIS) nonlinear transmission line requires a 
lower current density tunnel barrier, simpler matching circuitry, and lower magnetic field 
to operate when compared with conventional lumped-element SIS mixers. Waveguide 
receivers incorporating such long SIS junctions have demonstrated quite wide bandwidth, 
very low noise temperatures at submillimeter wavelengths [1][2]. However, the widths of 
these junctions have to be submicron to achieve reasonably high impedance for ease of 
matching. Consequently, they have to be fabricated using electron beam lithography [3] or 
with edge junction technique [4]. 

In standard fabrication process with optical lithography, the junction area is commonly 
defined through square or round resist stencils. In order to fabricate long distributed 
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junctions, long, narrow stencils are required. Such geometry is not ideal from the point of 
view of fabrication process, in particular the reactive ion etching steps. Damaged stencils 
result in too large variation of the individual junction size over a wafer. In addition, the 
lift-off process after SiO2 or Al2O3 sputter deposition is difficult or even not possible at 
very narrow line widths. In this work, we have experimented with wider (> 1 µm) and 
shorter (=λg, λg/2) SIS transmission lines. This type of resonant distributed mixer was 
proposed by Belitsky [5] and a quasi-optical version of it has been tested by Uzawa [6]. 

To achieve good matching between the waveguide embedding circuit and such a large 
distributed junction, we employ 2 resonant junctions connected in series, each with its own 
quarter-wave transformer section. This design allows for a lower circuit embedding 
impedance. Also the IF capacitance is reduced by half. The details of fabricated and 
laboratory test data will be presented below. 

 
II. Non linear transmission line resonator mixer design 

The characteristic impedance of our 1.4 µm wide non-linear transmission line is only 
about 1 Ω. At its half-wave resonant and full-wave resonant frequencies, the input 
resistance becomes reasonably large and the reactance vanishes. Fig. 1 shows the 
theoretical [7] input impedance at 660 GHz as a function of the length of the resonator. 
Note that the resonance structures are clearly observed. 

A waveguide horn couples the RF radiation to the waveguide and mixer chip. Fig.2 
illustrates the layout of the mixer design, and Fig. 3 is an SEM photograph of a single SIS 
long junction. Two types of resonant long junctions have been designed: the 5.7 µm long 
half-wave resonator (labeled HWR) and the 11.4 µm long full-wave resonator (labeled 
FWR). The nominal junction width is 1.4 µm. Two series connected resonator junctions are 
each integrated with a quarter-wave transformer. This arrangement has a dual purpose. 
First, it halves the IF output capacitance. Thus, the output capacitance of a HWR chip is 
about 0.4 pF and that of an FWR chip is about 0.8 pF. Secondly, the embedding impedance 
seen by each device is reduced. We need only to match each resonator to an impedance of 
about 20 Ω. We have incorporated a quarter-wave transformer with a characteristic 
impedance of 8 Ω on the HWR chip and 6 Ω for the FWR chip. 
 
III. Junction Fabrication 

The Nb/AlOX-Al/Nb tunnel junction was fabricated using standard SNEP (Selective 
Niobium Etching Process) incorporating the anodization technique [8]. The processing 
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steps are illustrated in Fig. 4. 
Waveguide mixer elements for high frequencies require substrate materials with low 

dielectric constants and low absorption. Therefore crystalline quartz substrates are used. 
The fabrication of the SIS mixer circuit starts with the deposition of a Nb/AlOX-Al/Nb 
tri-layer in a photoresist mask defining the low-pass filter for the IF output. The base Nb 
layer is 200 nm thick. The film stress was measured [9] using the film on an extra wafer 
processed in same batch and it is adjusted to about 0.5 ± 0.1 GPa to achieve high quality 
(subgap to normal resistance ratio, RSG/RN~20) SIS junction. The measured stress of films 
is shown in Fig. 5. Just after the deposition of the base layer, a 6 – 8 nm thick Al film is 
sputtered in same chamber. The oxidation of the Al film is performed in the load-lock 
chamber with 53 mTorr Ar + 10%O2 for 30 min. The target critical current density is 7.5 
kA/cm2. Then 100 nm thick Nb counter electrode is deposited. After the lift-off of the 
photoresist, 75 nm SiO2 is deposited on the whole wafer to protect the surface of the Nb 
counter electrode from being oxidized in the later anodization process. For the definition of 
the junctions, first lines are patterned on top of the tri-layer using positive resist ip3100HS 
[10] and the Canon PLA501 contact mask aligner operating Deep-UV. Then the 
unprotected parts of the SiO2 and counter Nb film are etched away to obtain the long 
junctions. In order to avoid short-current at the junction edges, periphery of the junctions 
are anodized, followed by the deposition a 270 nm SiO2 and a 90 nm Al2O3. After lifting 
off the resist, the SiO2 layer is removed, and exposed area of the top Nb electrode is etched 
with 1.5 Pa Ar plasma for 4.5 min. Finally, the wiring Nb layer was deposited and patterned 
and, a gold layer was evaporated by e-beam deposition to provide good contact pads for the 
IF port and ground.  
 
IV. Receiver noise measurement 

The mixer chip is installed in a fixed-tuned waveguide mixer block developed for the 
Sub-Millimeter Array [1]. For laboratory noise temperature measurements, we have 
employed a liquid helium cryostat. The measurement setup, as shown in Fig. 6, is identical 
to what was previously described by Tong [8]. The IF is 1.5 GHz. Local oscillator power is 
provided by a cascade of solid-state multipliers pumped by a Gunn oscillator. The LO 
beam is collimated by a 90 degree off-axis parabolic mirror. A Martin-Puplett 
interferometer provides LO and signal diplexing. The beam reflected off the paraboloid 
passes through several layers of infrared blocking filters, made from porous Teflon sheet, 
at 77 K and 4.2 K, is then focused on the mixer feed using a parabolic mirror. 
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The heterodyne receiver noise measurements were made using the standard Y-factor 
method for room temperature (295 K) and liquid-nitrogen-cooled (77 K) loads. 
Double-side-band noise temperature is computed from the experimental Y-factor with no 
correction for Planck’s radiation law.  
 
V. Results and Discussion 

Using resistance data from large (5.0, 3.0, 2.0, 1.75 and 1.5 µm square) junctions 
fabricated on same wafer, the current density of the barrier is determined to be about 7.0 
kA/cm2, which is close to the design value. The subgap to normal state resistance ratio 
(RSG/RN) is typically > 15. Fig. 7 shows a typical I-V curve of a full-wave long junction 
(nominally 1.5 µm x 10.8 µm= 16.2 µm2), together with its measured heterodyne response 
at 579 GHz to hot and cold loads. From the normal state resistance of this device of 3.98 Ω, 
we infer that junction size is 13.6 µm2. This means that there is a difference of around 0.22 
µm in both length and width of device compared with the design values. At a bias voltage 
of 3.8 mV, a Y-factor of 1.72 is obtained. This corresponds to a double-side-band receiver 
noise temperature of 226 K. 

A number of chips have been tested. A noise temperature of 240 K is routinely obtained 
at around 600 GHz. The measured noise temperature as a function of LO frequency is 
plotted in Fig. 7 for both an HWR and a FWR chip. When the helium bath temperature is 
lowered to 2.5 K, the receiver noise temperature is reduced by about 100 K. The lowest 
noise temperatures measured at 2.5 K is 161 K at 597 GHz. The double sideband 
conversion loss corresponding to the lowest receiver noise point are estimated to be 8 ± 2 
dB and 7 ± 2 dB, for the half and full wave resonators, respectively. The IF-amplifier noise 
temperature is around 5 K. 

The achieved RF bandwidth of all measured devices is only about 5 % that is around 30 
GHz. The center frequency of the resonance is also shifted by about 10 % toward the lower 
end of the target frequencies. We believe that the frequency shift and the narrow RF 
bandwidth are result of the undersized junctions; we estimate 0.22 µm of shrinkage for a 
nominally 1.4 µm design. The measurement setup can also be improved to give better 
sensitivity toward the higher end of the frequency band. 
 
VI. Conclusion 

Preliminary tests have been made on a distributed 
superconductor-insulator-superconductor (SIS) resonant mixer in a fixed-tuned waveguide 
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mount in the 600 GHz band. The best double-side-band receiver noise temperature 
measured so far is 161 K at 597 GHz. However, the achieved RF bandwidth of every 
measured device is only about 5 % (that is about 30 GHz) and the center frequency of the 
resonance is also shifted 10 % (that is around 60 GHz) towards lower frequencies. These 
effects are caused by impedance mismatch between waveguide and the junctions, because 
the design parameters are slightly different, and because the resonator width was shrunk by 
about 0.22 µm during fabrication process, especially photolithography and RIE. We are 
currently working on a second batch of devices designed with parameters extracted from 
the measurement data. 
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Fig. 1 Calculated real and imaginary parts of the input impedance of a 1.4 µm
wide open-ended SIS transmission line. Note that around integer multiples of λg/2 
(6 µm in this case), the reactance vanishes and the resistive part becomes larger. 

Table 1 Size of sections in a mixer.

HWR FWR
Width [µm] 9.0 14.0
Length [µm] 36.5 36.5
Width [µm] 1.4±0.2 1.4±0.2
Length [µm] 5.1±0.3 11.4±0.3

Transformer

Junction

Feed Point of
Waveguide
Circuit

Microstrip
Transformer
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SIS Junction

Insulating
Layer

GND IF Port

Fig. 3 SEM photograph of a full 
wave resonant distributed SIS 
quasiparticle tunnel junction. 

Fig. 2 Layout of the resonant SIS mixer
chips. 
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Fig. 4 Fabrication steps for SIS tunnel junction with Selective Niobium Etching
Process (Selective Niobium Etching Process) incorporating with the anodization
technique. 
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Fig. 5 SIS quality factor, RSG/RN, as a function of internal stress of base Nb 
film. Minus sign represents compressive stress. Thin film with about 0.5 GPa
compressive stress gives relatively high quality junctions. 
Fig. 6 Layout of receiver experiment. The mixer assembly, parabolic mirror and
HEMT amplifier are mounted on the 4.2 K-cold plate. 
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