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Abstract

We discuss a general theoretical framework for representing and propagating coherent and partially
coherent submillimetre-wave fields by means of mathematically over-complete sampled basis functions.
One such basis set, Gabor modes, consists of overlapping translated and modulated Gaussian beams.
In the paper, we present some extraordinary resulis from modal field reconstructions and propagations,
including simple models of bolometer arrays. Our new formalism is currently being used to study other
inleresting schemes such as spatially compressed, and therefore non-orthogonal, Gaussian-Hermite
polynomials.

1 Imntroduction

The THz region of the electromagnetic spectrum (100GHz-10THz, 3mm-30um) offers numerous scien-
tific and technical opportunities in areas as diverse as astronomy, atmospheric physics, medical imaging,
gas phase spectroscopy, antiquities, and industrial process control. A major difficulty when designing
instruments for these wavelengths is how to model, in an accurate and efficient manner, the behaviour of
complicated coherent and partially coherent optical systems.

Two problems are encountered when attempting to model THz optical systems. First, the field of
interest may be in a complicated state of coherence. For example, in the case of astronomical imaging
arrays, the total field is comprised of the fields of the individual pixels, and depending on the type of
system, these can be individually coherent or incoherent, and mutually coherent or incoherent. Second,
when propagating and scattering a THz field, diffraction is important, and therefore ray tracing cannot
be used, but conversely, full electromagnetic simulations are slow as multiple finely-sampled diffraction
integrals are needed.

A partially coherent field may be regarded as a incoherent linear superposition of a set of fully coherent
fields—the natural modes—and therefore the propagation and scattering of a partially coherent field can
be regarded as the propagation and scattering of a number of coherent fields. Clearly, it will not be possible
to analyse the behaviour of partially coherent systems unless the behaviour of fully coherent systems can
be analysed efficiently. Gabor decompositions may offer a way out of this difficulty. It is known that
Gabor decompositions can sample the real and Fourier spaces of space- and band-limited functions in a
compact and elegant manner. In addition, a Gaussian field propagates in a modal fashion, and complex
ray tracing can be used to trace the evolution of a Gaussian beam through a complex system of optical
components. If Gabor decomposition can be extended to partially coherent fields, then partially coherent
optical systems could be analysed easily, and many practical and theoretical developments would follow.
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Previously we have analysed [1, 2, 3], partially coherent fields using a finite number of Gaussian-Hermite
and Gaussian-Laguerre modes, basis sets in which the modes are mutually orthogonal but not complete,
since an infinite number of such modes are needed to form a complete set. Such simulations have been
very successful because the natural modes of a finite throughput Gaussian beam telescope are prolate
spheroidal functions, closely related to such Gaussian based modes. In this paper we present a framework
to quantify the degrees of freedom in a field a basis can support and we explicitly consider the numerical
sampling of bases for optimal results. By these means we present an opportunity for the optimisation of
sampling within modal analysis, ensuring that computational operations are reduced to a minimum.

We also demonstrate the feasibility of modelling the behaviour of partially coherent THz optical sys-
tems through the use of Gabor modes. Tn actual fact, the core of our analysis is not restricted to Gabor
decompositions, but can be applied to any set of functions that form a non-orthogonal and complete or
over-complete basis set. By complete we mean that the basis set supports all the degrees of freedom over a
field’s span without linear dependence between the basis functions, whereas for over-complete basis there
are additional basis functions relative to the complete case and hence linear dependence in the basis set.
In addition, we do not work with infinite-dimensional function spaces, but work with the practical reality
of sampled, space-limited functions, which are spanned by finite dimensional vector spaces. Not only do
we explore the behaviour of the basic mathematical structures involved, but we also provide an efficient
numerical algorithm for decomposing partially coherent fields. The algorithm is demonstrated by propa-
gating various fields through a simple two-dimensional Gaussian beam telescope. These models reproduce
all of the well known classical behaviour, and achieve exceptional levels of numerical performance. Al-
though in this paper we restrict ourselves to three-dimensional, scalar, paraxial propagation, the extension
to vectorial paraxial propagation is straightforward essentially because paraxial vector fields separate in
Cartesian coordinate systems. We also believe that it is straightforward to extend the basic technique to
wide-angle, three-dimensional vector fields. Extended techniques to couple the power between fields and
calculate the entropy associated with a field are presented in another of our forthcoming papers[4]. For
the purpose of demonstrating the basic technique, we only propagate fields between Fourier planes, but
in later work we will use complex ray tracing to calculate the field across intermediate surfaces.

2 Handling basis sets that are non-orthogonal and have varying
degrees of completeness, including over-complete

We have previously shown[2] that partially coherent optical fields decomposed in orthogonal complete
basis sets (modes) can be handled within the coherence matrix formalism. Now we shall present the
analogous formalism for non-orthogonal over-complete basis sets. We decomposed optical fields into
orthogonal complete bases by using continuous integral equations, but when such a method is implemented
numerically the functions must be sampled at discrete points, and the sampling determines the number
of degrees of freedom that must, potentially, be represented. The use of discrete representations is closely
related to the way in which optical fields are measured experimentally. In order to deal with the degrees
of freedom explicitly, therefore, we shall now work with discretely sampled fields. More specifically, we
represent a one-dimensional optical field by a column vector  of length N. Throughout the paper, the
notation x(i) is used to denote the i*" element of the vector, . Consider an arbitrary over-complete and
non-orthogonal basis set {e,} where & € {1,2,..., M}. In other words, we sample the field at N points,
and we wish to use M basis functions to represent the field. Loosely speaking, over-determined implies
M > N, uniquely-determined implies M = N, and under-determined M < N. That is to say, we certainly
require enough degrees of freedom to describe all of the points in the original field. We wish to represent
the field vector = in the form

m:Zakek, (])
k

which is analogous to the continuous representation. We define the ‘frame’ matrix, §, as the sum of the
matrices formed by taking the outer product of each basis function with its own conjugate transpose,

S’:Zekel, (2)
k
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where (.)! indicates the conjugate transpose. At this point the physical and theoretical meaning of S
and the associated operator are put aside, although it is beneficial to notice that for an orthonormal
set § = I, indicating completeness, as would be true for an infinite set, & — oo, of discretely sampled
Gaussian-Hermite modes. Equivalently, we can define a new N x M matrix E by collecting together the
column vectors that represent the basis functions:

E:[el---ek-“eﬂ[]. (3)
The frame matrix then simply becomes
S=EE" (4)

We see that whereas the N x N matrix § = EE! is associated with completeness, the M x M matrix
R = E'E is associated with orthogonality. Consider operating on 2 with § thus:

Sz = Z(ezz)ek, (5)
k

where we use parentheses throughout the paper to emphasise when the enclosed quantity is an inner
product, and therefore can be moved easily to a different position within an equation. Now assume that
S is invertible in that there is some matrix $~! such that,

sT's=1 (6)

The formal proof that S is invertible for a complete or over-complete set is presented in our theoretical
paper [4]. Tt follows applying §~! to (5) that
5'15z=m=2(elz)5_1ek‘ (7)
k

Now we identify a dual basis set {€;}. Each element is not a conventional dunal vector, in the sense that
because of over-completeness, the orthogonality condition,

e}: é[ = ‘5kt y (8)

is not satisfied. Rather, the dual basis functions are such that,
&, =S"le,. (9)

The dual function obtained through the use of §7" is the canonical dual, the dual of lowest energy. Clearly
in the case of a complete orthogonal set, § = I, and the dual vectors are the same as the basis vectors.
According to (9), (7) becomes

® = Z(e}am)ék (10)

k

It is convenient to define a set of coefficients b, = (’z:r in which case the field expansion becomes

= bpéy. (11)
k

We can now go through the same procedure again, but starting with the assumption that the inverse of
§ exists such that,

ss™'=1 (12)
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Hence,

S8 'z == =Zeke;{,s_1:r.. (13)
k

It can be shown that because § is Hermitian, its inverse must be Hermitian:
()" =851, (14)

and by using (9) we find

Substituting (15) into (13),

k
Finally, we define the coefficients ay according to a; = éL:n and obtain
x® = E age, (17)
k

which on comparing with (1) is the form required. In summary, the set {€; } forms an over-complete basis
with the coefficients bz, and the set {ex} also forms an over-complete basis with coefficients ax and we
have shown that a field can be decomposed into either of these bases.

3 Handling partially coherent fields

Using the expansions described in the previous section, we can now represent partially coherent fields using
over-complete basis sets. Throughout this paper we assume, in accordance with the theory of analytic
signals, that the complex sampled field components 2(%) have small fractional bandwidth, §f/f <« 1, and
the spatial correlations of interest are characterised by second-order ensemble averages. Defining the space
domain coherence matrix (SCM), W, as the ensemble average, (.}, of the outer product of the optical
field vector = with its own conjugate:

W = (za'). (18)

Each element of W is a measure of the complex spatial coherence between the field at two points. In this
sense the SCM is the coherence matrix obtained when a set of delta functions, positioned at the sample
points, is used as the basis set. The SCM contains sampled information that is the discrete analogy of
the cross spectral density function. Using the results of the previous section, we can expand the SCM as
follows. Substituting (11) and (17) into (18), we find

w = (z2) (19)

= Z Z (b,;aZ) é;,.el
k h
Z Z Crnérel,
kA

where the complex coefficients Cjp constitute the coherence matrix elements in this representation. Sub-
stituting the definitions of the basis-function coefficients we find

(bxaap) (20
= BLWéh.

Crn
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The elements of the coherence matrix can therefore be calculated easily once the SCM, and the dual basis
vectors are known. Here we have expressed the coherence matrix in terms of the correlations between the
coefficients of the Gabor functions and the coefficients of the associated dual basis. Later we will discuss
the alternative representation using correlations between the Gabor functions and themselves. First we
will examine why the representation in (20) has a number of attractions. It can be seen from (20) that the
overall structure reduces to simple and well-known forms in all of the various limits that can be imagined.
For example, suppose that the source comprises a fully-incoherent surface with uniform intensity. In this
case W = I, and according to (20) the coherence matrix elements become

Ckh = eLéh. (2])

For an over-complete set, the basis functions and the associated dual functions are not orthogonal; however
for a complete non-orthogonal set, the basis functions and the dual functions are mutually orthogonal,
and in this case,

Ckh = th, (22)

and the conventional dual condition (8) holds. (22) is important as it shows that, for a non-orthogonal and
complete set, a completely spatially incoherent source excites all basis functions incoherently and equally,
as is the case for orthonormal sets. In the case of an over-complete basis set, a fully-incoherent source
leads to correlations between the basis vectors, due to their linear dependence, as would be expected on
physical grounds.

The expansion described by (19) has many convenient qualities, but it is inconvenient from an optical
point of view, as we would like to propagate partially coherent fields by propagating the basis functions
only. If we use (19) it would be necessary to propagate the dual functions as well as the basis functions.
Suppose, therefore, that we use the form

W = (= :ET> (23)

> (axai)exe]
E ok

Z Z Okheke;“
k h

where the matrix coefficients are given by
Cin = &l Wey. (24)

This decomposition has the advantage that it is only necessary to propagate basis functions, but has the
disadvantage that even for non-orthogonal complete sets, the coherence matrices do not take on simple
forms for fully incoherent fields. It does, however, lead to an insight into the meaning of the frame matrix S.
Supposc that we excite all of the basis functions incohcrently and cqually, which we cannot do in practice
for an over-complete set because of linear dependence. In this case, the coherence matrix becomes C = I,
which can be substituted into (23) to yield the implied spatial correlations, this substitution gives,

W o= > ) dinere] (25)
k h
= Zekez,
k

which is the frame matrix S. This result is not surprising when one remembers that ekeL gives the
spatial correlations for each basis vector, and if two mutually incoherent fields are added, regardless of the
state of coherence of each, the overall coherence matrix is simply the sum of the two individual coherence
matrices. Hence, the frame matrix is simply the coherence matrix of a sum of individually fully coherent,
but mutually incoherent basis fields. In short, the frame matrix contains information about the spatial
correlations, due to linear dependence, associated with all of the basis vectors.

The explicit use of the SCM to calculate the coherence matrix elements provides a method for represent-
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ing coherent, fully incoherent and partially coherent fields using over-complete bases. A major advantage
of the scheme is that SCM can be calculated for a variety of different fields, and complicated forms as-
sembled. For a fully coherent field described by vector 2, the coherence matrix is trivially W = a«!. For
a fully incoherent uniform field W = I, whereas for a fully incoherent field, with some spatially varying
intensity distribution, the SCM is simply diagonal, with the diagonal elements scaled according to the
intensity.

By noticing that we can add mutually incoherent fields by adding coherence matrices, we can set up
the fields associated with numerous practical situations. For example, we can model a noisy aperture by
adding to the scattered field, the field associated with the blackbody radiation of the aperture.

4 Properties of the frame matrix

The invertibility of § to form the $~' matrix is vital to the existence and formation of the dual frame. It
can be demonstrated using elegant linear algebra that S is invertible for critically or over sampled frames
[4]. The invertibility of § appears in a different form in Daubechies’[5] definition of an associated frame
operator for continuous frames and use of Bessel’s inequality. Here we give explicit consideration to the
singular value decomposition (SVD) of the frame matrix leading us to the same conclusion. We shall now
consider two hermitian matrices formed from matrix E(3),

S =EE", (26)
and
R=E'E, (27)

Several important properties of the basis can be investigated by considering the SVD of these matrices
and the matrix, E. E can be expressed in the form of a singular value decomposition as described in
numerical recipes[6] such that

E=UsVT, (28)

where both matrices U and V are unitary, U having dimensions N x N and V having dimensions M x M
and X is a matrix N x M. The columns of U contains the left singular values of E, the vectors that
span the range of E. V contains the right singular vectors of E. X is diagonal with the " diagonal
element, ;. The elements of T are ordered in descending size and the first min(M, N) diagonal elements
are non-zero with the i** element corresponding to the i column of U, w;, is the corresponding vector
that spans the range of E. The condition of the vector space spanned by E is defined as the ratio of
the smallest and largest values, we have considered an ill conditioned situation to arise when this ratio
< 1075, The values of ¥ where ¢; is zero (or as good as numerically) correspond to the i** column of V,
v;, the column of V' that gives a vector that span the null space of E.
Using the unitary properties of U and V it follows that,

S =EE'
=vzvivziy! (29)
=UsziUt
and
R=E'E
=vzulustv! (30)
=vezivh
Given X is diagonal the first min(M, N') diagonal elements of both 23! and ' are identical with an

ith diagonal element of ¢?. So the smaller matrix of £X' and E'E has eigenvalues satisfying o7 and
the larger matrix has the same first min(M, N) eigenvalues with the rest numerically equivalent to zero.
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From equation(29)

U 'SsU=U'EE'U
=U-'uzsstutu (31)
=z3xt

and likewise,

VIRV =V EEV
=v-ivsulustviy (32)
=33l

Since both S and R are hermitian the columns of V' are the normalised eigenvectors of R, v;, i = 1...M;
and the columns of U are the normalised eigenvectors of S, i, i = 1...N. The matrix § measures the
completeness of the basis set, whereby if the number of non-zero eigenvalues of § equals N then the basis
is complete or over-complete and can represent all the degrees of freedom in the signal. The matrix R
measures the orthogonality of the basis set.

5 Gabor Basis Sets

An over-complete non-orthogonal basis can be formed by a subset of frames known as the Gabor frames.
Indeed much of the development of the formulation to handle frames was done with consideration to this
particular set of bases. In Gabor bases the basis set modes are generated from a single mother function
or atom(g), translated and modulated. Now we shall describe the modulation operator and translation
operator which together generate the frame from the mother atom. We are again considering the 1-D
field sampled by a vector of length &, our mother atom and consequently basis modes are therefore also
described by vectors of length N . To form a frame, a translation spacing(a) and a modulation spacing(b)
are chosen. To avoid boundary artifacts arising from assumed periodicity in the field signal and basis both
a and b are chosen to be integer factors of N. Two other integers representing the number of modes arising
from the operators on field vector are defined, a = % and b = % The expression (p mod ¢) represents
the modulo operation associated with integer division, giving the integer remainder when p is divided by
¢. The translation operator T is,

Tyug(j) = 9((j —va) mod N)  veZ, (33)

and the modulation function M operates such that

amig ((v4ug)  mod N
N

M.g(j) = €™ gli) vez (34)

where vy is an phase offset introduced to ensure that the phase differences between modes are zero on the
input plane for at a defined optical axis, this method for assigning an optical axis can only be used when
the optical axis is chosen to lie on a sampling point and not between them. To define an optical axis at
a half-integer point we use (vg = 0) and multiply every element in g by a complex phase factor, this is
slightly more costly computationally so to maximise the size of the largest system that can be realistically
examined it is advisable to chose the sampling such that the optical axis lies at a sampling point, giving
an integer value of vy. Using the Gabor basis functions the frame matrix elements can again be calculated
as the outer product of the basis functions as in equation(4) giving,

-1 b=1
Sjk = Z Z Mmanag(j)(Mmanag(k))T (35)

n=0m=0

As yet no information about the functional form g is assumed other than it must have suitable support
for a complete basis to be formed. Given our definitions above of T, and M s, for Gabor frames, § will
clearly have a sparse banded form, this structure can be exploited as many optimised matrix manipulation
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algorithms exist for such matrices. Additionally and importantly the Gabor frame operator, associated
with the frame matrix, commutes with both the modulation and the translation operator such that when
S~ exists (i.e. for complete and over-complete frames) we see,

T = S Gpn
= ST Mg
=T,..M,:5 g
=ThaMeg.

(36)

Consequently only the mother dual associated with the mother function need be calculated and the entire
basis set can be generated using the same operators. Gabor originally presented a Gaussian mother
function atom as suitable with the form,

9

g(x) = Aoemp(—rrg—g), (37)

where Ag is a scaling factor and « is again the translation spacing of the basis as described above.
Gabor modes have been used for coherent signal coefficient decomposition and image analysis and such
applications and implementations of frames are discussed in papers such as Feichtinger’s papers[7, 8].

6 Implementation

The inversion of the frame matrix was not performed directly but a conjugate gradient method (CGM),
as described in Numerical Recipes [6], was used to minimise the residue,

e=|5a-g], (38)

and hence determine the mother dual for a 1-D system. The choice of the norm operator ”H in (38)
determines the form of the dual and whether null space vectors of § are added to the canonical dual.
This method avoids any direct intermediate calculation of the inverse of § and was found to converge very
rapidly. The success of this process of minimisation is directly related to the results of the SVD of E and
the invertibility of S. Additionally this method was able to find an approximate solution when S is not
invertible, i.e. for under-complete frames, when an approximate form for the dual is found through the
use of the analogous form of (36). Having obtained the mother dual and consequently the dual basis set,
successful decompositions and reconstructions of fields were performed using the coherence matrix form
given in (23). This is the form of the coherence matrix which contains the coherence elements associated
with the Gabor basis functions themselves and was used because, as described next, these basis functions
were then propagated.

6.1 Propagating the Gabor basis functions

The Gabor basis functions are Gaussian in intensity and of particular interest as many techniques for
propagating (Gaussian beams exist in this field. Propagation is especially simple for paraxial quasi-optical
systems. Complex ray tracing of Gaussian beams is also extremely useful. An important subset of frames
is that of critically sampled frame where N = M (and hence N = ab) and additionally the Gabor
mother function takes the form of (37). An oversampled frame has N < M (and hence N > ab). The
mathematical continuous form of a critically sampled frame was shown to be complete in Gabor’s original
paper of 1946 proposing such a basis set [9], however the duals were not deduced until 1980 by Baastians
[10]. Propagation between Fourier planes is trivial for these frames if condition (37) is satisfied because
the frame at the input planc propagates to another Gabor framc at the Fourier planc formed at the focal
plane of a lens. The propagation was perform by coherence matrix element swapping, as each modulation
function in the original basis set propagates to a translation function in the Fourier frame and vice-versa.
This method of Fourier transform elegantly leads to the same information sampling across both the input
and transform plane and is extremely fast. Fourier analysis can of course only be applied to paraxial quasi-
optical systems, however such systems are of considerable interest and worth considering. We analysed
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several 1-dimensional systems using such frames including systems where the Fourier plane was limited.
Additionally we then analysed some 2-dimensional systems through the use of 1-dimensional operations
described, the justification and method to do this is now given.

6.2 Two Dimensional Fields

An important subset of two dimensional fields F(z,y) is where the field is separable in that the two
components, X (x) and Y (y) are independent. Such a two dimensional field is simply the product of
one dimensional fields, F(2,y) = X (2)Y (y), and can naturally be analysed using the product of two
one dimensional basis function sets. Any components and the propagation process itself must not affect
the separability of the field. Non-separable basis functions can be analysed within the mathematical
framework; however, the numerical cost involved in any practical implementation calculating the coherence
matrices in such a basis set is high and for a realistic number of sampling points often prohibitively so.
Considering a two dimensional system as the product of two one dimensional systems creates a problem of
the order 2 x N? whereas to consider the initial field as non-separable is a problem of the order N4, when
double inner products are necessary within the analysis the high cost of this is very apparent. Components
such as circular apertures and Zernike phase screens are non-separable in such an analysis. Fortunately
we can analyse such components within the separable framework through explicit consideration of the
discrete sampling used. For any field sampled in Cartesian coordinates (pixellated) a non-separable field
can be expressed as a sum of separable sampled fields. This trivially follows from the pixel basis being
the outer product of the # and y co-ordinate systems. Likewise, discrete sampling of components such
as circular apertures allows them to be analysed in the same way. As a pixellated system tends from
separable into two 1-D functions to only separable on a pixel scale the cost of the computation tends to
the higher N'* limit. Each of the separable fields within the total field can be analysed separately and the
coherence matrix elements of constituent fields summed at the appropriate output plane. To determine
the separable form of any continuous field we can consider another SVD performed on the matrix F where
the elements of F are Fj; = F(z;,y;). If the SVD is performed, using the same notation as before for
the SVD, such that F = UXV?, then the pixellated form of the function sampled by an H x H matrix
is given by,

H
Fz,y) = ontn(a)on(y)'. (39)
n=1

For many fields the field or a good approximation to it can be given by,

F(z,y) = Zanun(a’)vn(y)n (40)

where J < H, reducing the complexity and increasing the computational limits of the problem. Some
simple 2-dimensional fields formed as the outer product of two 1 dimensional fields were investigated.

7 Results
7.1 The form of the dual

The form of some of the dual mother atoms for a fixed value of N but with varying values of @ and &,
forming critically or over-complete frames, are shown in Fig.1. The form of the duals can be seen to differ
dramatically. Many of the duals can be seen to contain discontinuities especially in critically sampled
frames and careful consideration of these is necessary within numerical simulations. Additionally it can
be seen that increasingly over-sampled systems have smoother dual functions.

7.2 Investigating the completeness of the basis set

The eigenvalues of ¥ and T1X were found using SVD and the highest, and lowest eigenvalues of both $
and R plotted for a variety of frames with a fixed number of samples in a field. The results for two frames
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Figure 1: From top to bottom and left to right the frames are defined with a mother atom of the form
given in 37 and the values of (N, a, b) are given to define the frames as (144,2,72), (144,12,12), (144,9,16),
(144,6,72), (144,16,9), (144,3,48), (144,6,16), (144, 8, 16), (144,8,12), (144,12,8)
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Figure 2: The highest and lowest eigenvalues of both § and R. N = 144, a = 12, b €
{2,3,4,6,8,9,12,16, 18, 36, 72} waist satisfying (37). The critically sampled frame is not complete.
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Figure 3: The highest and lowest eigenvalues of both § and R. N = 144, a = 9, b €

{2,3,4,6,8,9,12,16, 18,36, 72} waist satisfying (37). The critically sampled frame is complete.

363



14th International Symposium on Space Terahertz Technology

with N = 144 are considered here. The first frame with a = 12 and b € {2,3,4,6,8,9,12, 16, 18, 36,72} is
shown in Fig.2, a second frame with « = 9 and b € {2,3,4,6,8,9,12,16, 18,36, 72} is shown in Fig.3. The
waist for every frame was taken to satisfy (37). In these investigations we fixed the number of translational
modes and changed the completeness of the frame by varying the number of modulations used.

7.3 Quantifying the degree of completeness of a frame

The information that can be supported was invested for under determined, critically sampled and over
determined frames. The number of samples of the basis functions was fixed. The ratio of the number of
non-singular eigenvalues from the SVD to samples of the basis function was plotted against the translation
spacing a for various values of modulation spacing b. By the assumed periodicity of our method we are
restricted to certain values of a and b, however other frames with different numbers of samples can
provide other values. Data for the parameters N = 144, a € {2,3,4,6,8,9,12,16,18,36,72} and b €
{6,8,9,12,16, 18,36, 72} was calculated, the waist for every frame was taken to again satisfy (37). The
results are shown in Fig.(4).

7.4 Analysing the results investigating the completeness of the frame

An interesting feature arises in our results; when investigating critically sampled Gabor frames we expect
S to be invertible and to support N degrees of freedom. However the results of Fig.2 show that the SVD
results in a zero lowest eigenvalue, on closer investigation it was found that only this eigenvalue was zero
and thus a single degree of freedom is not represented. However the frame investigated in Fig.3 was found
to be complete and support all degrees of freedom in the signal. The continuous form of the traditional
Gabor mother atom has been shown to form a frame that spans the space and the discontinuities seen in the
duals of critically sampled frames in Fig.1 can be described mathematically in a continuous analysis[10].
However this missing degree of freedom anomaly arises from a discretely sampled implementation of such
discontinuous duals. Critically sampled frames can be said to be unstable due to this behaviour. Clearly
as critical sampling is approached there is a change in behaviour of the frames in Fig.2 and Fig.3, where
by the lowest eigenvalue dips relative to the trend. Tt is simply the size of this effect that determines
whether S is invertible and the frame spans the space. For our paraxial propagation investigations we
investigated critically sampled frames, ensuring that the frames were complete or that there was no power
in any missing degree of freedom. Ideally in the future we wish to quantify the conditions under which
critically sampled frames are also complete frames. However it should be emphasised that this is a minor
consideration as we have found and used complete, critically sampled frames with great success.

7.5 A 1-D illustration of the Van-Cittert Zernike Theorem

Fig.5 shows the simulations of two systems. The top left plot shows the reconstruction of two fully self and
mutually coherent Gaussians, the intensity is shown by the solid line and lies concurrently with a dashed
line showing the coherence function. The reconstruction of the field of length N = 81 was performed in a
(Gabor basis set with @ = 9 and b = 9, i.e. using a basis set consisting of Gaussians of a different size to
those in the field. The field was then propagated to the Fourier plane and the results of the reconstruction
are shown in the top right plot. The bottom left plot shows the reconstruction of two fully self and
mutually incoherent Gaussians, and two dashed lines are plotted plotting the coherence function relative
to the centre of each Gaussian. The intensities of the Gaussians were identical to the coherent case as
was the basis set used for the decomposition. This field was propagated to the Fourier plane and the
results are shown in the bottom right plot. It should be emphasised that the input fields shown are not
the simply the inputed field but the basis function coherence matrix decomposition and reconstruction of
this field.

There are several outstandingly successful features to notice in these results. The decompositions
successtully retain all the degrees of freedom in the field, including the representation of the delta functions
associated with the coherence function of the incoherent Gaussians. The coherent Fourier plane results
show the fringes as expected from regular Fourier theory. Although the fringes in Fig.5 are extremely
sharp, they are not under sampled but simply only contain the original information from the field, without
artificial smoothing from oversampling. By only representing the degrees of freedom in the original field
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(no. degrees of freedom supported)/(no. sample points in basis)
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Translation Spacing (a)

Figure 4: The degrees of freedom a frame with the parameters N = 144, a €
{2,3.4,6,8,9,12,16,18,36,72} and b € {6,8,9,12, 16, 18, 36, 72} is shown, the waist for every frame was
taken to again satisfy (37). An important featur of this plot is the region where the plots tend to a value
of 1 on the vertical axis; it can be seen some critically sampled frames are complete whereas others have
a single missing degree of freedom.
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Figure 5: Top Left: Two coherent Gaussian sources, reconstructed in a basis sct of Gabor functions
consisting of Gaussians of a different width to the sources, at input plane. Top Right: The coherent
Gaussian sources at the image (Fourier) plane. Bottom Left: Two mutually and self incoherent Gaussian
sources, reconstructed in a basis set of Gabor functions consisting of Gaussians of a different width to
the sources, at the input plane. Bottom Right: The incoherent Gaussian sources at the image (Fourier)
plane. The solid line in all plots shows the intensity of the function and the dotted line the coherence
function. At the input plane for the coherent (Gaussians the coherence function and the intensity line are
concurrent. At the input plane, for the incoherent sources, two coherence functions are plotted relative to
the centre of each of the Gaussians.
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we are not supporting redundant information and are dramatically increasing the power and efficiency
of the simulations. There are equally interesting results from the incoherent system’s Fourier plane, as
expected from a fully incoherent field the Fourier intensity is uniform and contains no spatial features.
Additionally the form of the fringes in the Fourier coherence function can be seen to be the same as those
in the coherent Fourier intensity; illustrating the well known results from the Van-Cittert Zernike theorem
whereby the forms of the coherence and the intensity are swapped at the Fourier plane.

7.6 Diffraction Limited 1-D System

A simple finite throughput quasi-optical system was simulated. A fully coherent top hat function was
decomposed and propagated to the Fourier plane, where an aperture was placed to limit the throughput.
The limited field was then propagated to the image plane and reconstructed. The results for varying
size of apertures are shown in Fig.6. It should be noted that all the fields shown have resulted from
reconstructions, where the coefficients associated with the basis Gabor functions have been calculated and
the basis functions propagated. The top left hand plot is the reconstruction where an infinite aperture
has been used at the Fourier plane and hence the original field has been reconstructed at the subsequent
image plane.

Again all degrees of freedom in the original field have been preserved in the decomposition and re-
markably the stepped edges of the top hat function have been perfectly reproduced. Even using a large
number of Gaussian-Hermites the edges are not reproduced and Gibbs oscillations are seen.

7.7 2-D separable systems, including simple bolometer and horn array models

We modelled a simple bolometer system and transformed the field to the Fourier plane. The intensity
and coherence function of the original field represented in a frame basis and the corresponding results in
the Fourier plane are shown in Fig.7. A simple horn array was then modelled with the same intensity
function as the bolometer array modelled in Fig.7. The horn array results are shown in Fig.8.

8 Conclusions

We conclude that the mathematical framework, presented in this paper, provides a method for:

¢ Explicitly handling sampling within modal decompositions ensuring no redundancy in the field
information is propagated. By optimising the sampling to the field we avoid unnecessary calculations
that are computationally expensive while still maintaining the accuracy of our simulations.

e Simulating fully coherent, fully incoherent and partially coherent field

¢ Elegantly handling new basis sets, previously avoided because of the difficulties handling non-
orthogonal over-complete basis sets.

o Quantifying the range of basis sets and quantifying improvements to basis sets by measuring ratio
of the degrees of freedom in the field to those supported by the basis.

The simulations presented demonstrate the success of this framework by:
e Producing field reconstructions which retain all the degrees of freedom present in the initial field.

e Reconstructing delta functions and sharp edges in fields, field features that a finite set of Gaussian-
Hermite basis modes can not support.

Additionally our work in this area has derived relations for the power coupled between two partially
coherent fields and the entropy of a partially coherent field within the framework of over-complete basis
sets. To be published [4].
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Figure 6: A top hat of was propagated to the Fourier plane where decreasingly small apertures were
simulated. Propagation of the limited field was then performed to the next Fourier plane. Each plot is
titled with an index Limit# where # gives the number of samples set to zero, to simulate the aperture,
from each side of the signal. Qualitatively the throughput of the system decreases from top to bottom

and left to right.
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Figure 7: The top left image shows the basis function reconstruction of the intensity at the input plane
and the top right image shows a contour map of the coherence function of the array at the same plane
centred on a single pixel. Each bolometer element is made up of 9 mutually incoherent pixels and each
element is also mutually incoherent. The bottom left plot shows the intensity at the Fourier plane and
the bottom right the coherence function at the same plane centred centred on a single pixel.
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Figure 8: The top left image shows the basis function reconstruction of the intensity at the input plane
and the top right image shows a contour map of the coherence function of the array at the same plane
centred on a single pixel. Each horn element is made up of 9 mutually coherent pixels (i.e. each element
self coherent) but each element is mutnally incoherent. The bottom left. plot shows the intensity at the
Fourier plane and the bottom right the coherence function at the same plane centred centred on a single
pixel.
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