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Abstract — We present rigorous analysis of guided propagation in cylindrical waveguides
with finite conductivity and superconducting walls. Our calculations are based on a
method by Stratton which solves Maxwell's equations in cylindrical coordinates. The
transcendental equation gives the complex propagation constant as a function of
frequency, geometry and conductivity. The complex conductivity of the superconducting
waveguide is obtained from BCS theory. We computed the attenuation and cutoff
frequencies in different materials at microwaves and submillimetre-wave frequencies and
compared with those obtained from the commonly used approximate computations.

1 Introduction
While the electromagnetic behaviour of planar superconducting transmission lines have
been thoroughly investigated [1] — [4], little has been reported on superconducting
waveguides. Waveguides are fundamentally different from the microstrip. A microstrip
can support a single TEM with complex propagation constant that remains constant
below the superconducting gap. A cylindrical waveguide however supports multimode
operation and the complex conductivity influences propagation via surface impedance
dependency and also by modifying the modes cuttoff. Consequently we expect
superconductivity to influence attenuation significantly, not only near the gap but also
near cutoff.

The commonly used method for calculating the complex propagation constant in a
waveguide is to first obtain the fields by assuming infinite conductivity. This allows
separating the solution into TE and TM modes. The cutoff frequencies and phase velocity are
obtained by solving a simple characteristic equation. To calculate attenuation, the fields
are assumed to penetrate the conductor surface and energy dissipated rapidly within a
thin layer. This analysis is only valid if the decay of the field within the surface is much
faster than its variation in the tangential plane, an assumption that applies for good
conductors.

In a waveguide of finite conductivity, pure TE or TM modes cannot be excited
separately. A valid solution of the wave equation must be expanded in terms of both TE
and TM mode functions. Equating the tangential components of the fields at the
boundary within and outside the conductor surface yields characteristic equations far
more complicated than those for the perfect conductor.

2 Propagation in lossy cylindrical waveguides
Approximate solution: The electric and magnetic fields propagating in the z-direction in a
waveguide with uniform cross section are expressed as -

E = Eoe-(a+ifi)z and H = Hoe-(a+Az , (1)
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where a and are respectively the attenuation and phase constants. By considering the
average power per unit area along the waveguide and using the Poynting theorem, the
attenuation constants for the TM and TE modes respectively are given by the
approximate expressions [5]

where a is the radius, Zs the surface impedance, ri the intrinsic impedance, f the
frequency, fc the cutoff frequency, and p is the /-th root of the first derivative of the
Bessel function Jr 

n •

Exact solution: The field in the cylindrical waveguide may be written as a combination of
elementary waves having the general functional form —

of = efil ° Fn (lccr)e±j7z-i " , (3)
where Fr, is a cylindrical function, 7 = a + jfi is the propagation constant, ke2 = k2

2,

k = p5w2 	, and a is the complex conductivity of the lossy waveguide wall. For

superconducting waveguide the complex conductivity is obtained from BCS theory [7].
Within the waveguide (0 r a), F takes the form of a Bessel function tin and outside
the guide (dielectric or lossy conductor), the Hankel function of the first kind Hn

(1) is used
to satisfy the radiation condition at r --> 00 . The boundary condition that the tangential
fields are continuous across the waveguide wall yields four linear-homogeneous
equations in four unknown coefficients. A non-trivial solution is only obtained if the
determinant of the equations vanishes. This yields the transcendental equation [7] -

In the above u= kc
l a,v= kc

2a and the superscripts 1, 2 refers to the regions inside and
outside the waveguide respectively. The above equation can be solved numerically for
the propagation constant y for TE modes. For TM modes an alternate form of the
equation is required -
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3 Results & Conclusion
The results are depicted in Fig. 1 — 6. Our analysis reveals that in practical applications,
the modes in a superconducting waveguides could be approximated to those in a perfect
conductor, which is consistent with recently reported experimental results. We also found
that for good conductors, the attenuation computed by the surface impedance method is
very close to the rigorous solution. However the results from the two methods differ
significantly in two regions. They deviate near cutoff and at extremely high frequencies.
At co = coc the attenuation given by the approximate method becomes singular. In the
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Fig. 3 Cutoff frequency as a function of
conductivity. Notice that the cutoff

calculated by the approximate method does not vary
with conductivity.
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Fig. 1 Attenuation for TE11, TE01 and TM11
modes in a copper waveguide of radius 8.1 mm at
low frequencies. Results by both the exact and the

approximate surface impedance methods are in very
good agreement.
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Fig. 2 Attenuation for TEll mode in a copper
waveguide of 8.1 mm as in Fig. 1 showing

discrepancy between the results of the rigorous and
the surface impedance methods near the cutoff

frequency.
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Fig. 4 Attenuation for TEll mode in a copper
waveguide of 8.1 mm as that in Fig. 1 at extremely

high frequencies.

exact solution such singularity does not exist and the attenuation diverges sharply
but continuously. The differences turn out to be significant even for good conductors.
This difference in the attenuation results is large enough to be easily measurable. Next,
at very high frequencies, with the approximate method we can still assume
that only the TEll  mode is excited and hence the attenuation as a function of
frequency diverges to infinity. The exact solution however gives a finite loss, which
is clearly a more realistic behaviour. We attribute these differences to the fact that in
those cases the field can no longer be approximated to those of a perfect
conductor. In particular the solutions are no longer separable as either TE or TM modes.
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Fig. 5 Attenuation for TEll mode in a Nb

waveguide of 0.16 mm. Both the rigorous and
surface impedance methods agree well for both

normal and non-superconducting states.
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Fig. 6 Attenuation for TEll mode in a Nb
waveguide of 8.1 mm. Both normal and

superconducting behaviours are shown. At low
frequencies both the rigorous and surface impedance
methods agree well. There are deviations between
the two methods at high frequencies above the gap.
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