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Abstract: We have revised and considerably extended our paper on quantum noise at the 13™ ISSTT. In the present
paper we first review general quantum mechanical limits on the sensitivity of heterodyne receivers. We introduce
the ideal broad band mixer (IBBM), which has a receiver noise temperature of zero Kelvin. Based on the hot-spot
model of a real HEB mixer, we model it as an IBBM in series with a passive resistance. An expression for the HEB
receiver noise temperature, including optical input loss is then derived. We find that the predicted DSB receiver
noise temperature agrees well with three sets of measured data. The result suggests that quantum noise and classical
HEB noise contribute about equally at low terahertz frequencies while at higher terahertz frequencies quantum noise
dominates.

1. INTRODUCTION

Hot Electron Bolometer (HEB) heterodyne detectors for the THz frequency range use devices fabricated from thin
films of low temperature superconductors, such as NbN. They have recently given rise to a radical re-evaluation of
our ideas of this frequency range, which has traditionally been regarded as one in which no very sensitive
heterodyne detectors exist. The sensitivity of HEB heterodyne detectors (‘mixers’) has become so good, i.e. the
receiver noise temperature has become so low, in fact, that it is worthwhile to discuss if Quantum Noise will
influence the receiver noise temperature of THz HEB receivers. Our theoretical analysis in this paper indicates that
at frequencies of about 2 THz quantum noise is equal to the “classical” HEB noise, while at higher THz frequencies,
quantum noise represents a dominant fraction of the total noise of HEB mixer receivers. We present a detailed
analysis of quantum noise in HEB receivers. The analysis represents a substantial extension and revision of our first,
preliminary paper on this subject given at the 13™ ISSTT [1]. We introduce the Ideal Broad Band Mixer (IBBM),
which shows no other noise than quantum noise (QN). Our basic assumption in the analysis is that the IBBM model
applies to an IDEAL HEB heterodyne detector. We then continue to use the IBBM concept to discuss a more
realistic HEB “hotspot” model, and derive an expression for the expected receiver noise temperature of HEB mixer
receivers as a function of frequency. Finally, we show that available experimental data of receiver noise temperature
at frequencies up to 5.3 THz can be fitted to this expression with good agreement. A considerably expanded and
more detailed version of this paper will be submitted to a journal shortly [2].

2. QUANTUM NOISE AND THE IDEAL BROADBAND MIXER

It is important to emphasize that “Quantum Noise” is a concept, which fundamentally expresses the limit in our
ability to perform a measurement of an electromagnetic field, imposed by the quantum mechanical nature of this
field. Callen and Welton [3] showed in their generalization of the Nyquist theorem that fluctuations (noise) are
intimately connected to the process of power dissipation. They calculated the average energy density of an
electromagnetic field, in equilibrium with an environment at a temperature, 7,. They obtained two terms, one of
which yields the Planck blackbody radiation formula. This term, when applied to a single mode transmission line
case, produces the familiar Nyquist noise expression. The second term yields an energy of 4f/2, which represents the
vacuum (zero-point) fluctuations of the field. Formally we might find the power emitted due to the second term into
a single mode transmission line in the same way as done by Nyquist. The total power radiated into a single mode in
a band B at frequency fthen becomes:
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The first term in this expression is the single-mode form of the Planck law. The thermal “Planck” noise power term
rapidly goes to zero for frequencies higher than k7/h, and when this happens, the second term in Eq. (1) begins to
dominate.

How are we to interpret the second term in (1)? It cannot represent exchangeable power, since it is impossible to
extract power from the vacuum fluctuations. However, if we imagine an electromagnetic field with a power given by
(1) at the input of a heterodyne detector with large photon number gain, it can be shown that the minimum noise
Sfluctuations at the output of an ideal such detector can be regarded as having been produced by the second term in
(1), which we will call the “quantum noise” term [4-9]. A general heterodyne detector generates an output at a very
low frequency (the “IF”) by down-converting radiation near the local oscillator. Using quantum mechanics Marcuse
[4], and later Haus [6], rigorously analyzed such a detector (an ideal photo-detector mixer), with no frequency
dependence of its properties close to the local oscillator frequency. In microwave terminology we would call this a
“broadband mixer”, or ‘BBM’, i.e. a mixer with equal response in both sidebands. We will initially use this photo-
detector model to discuss heterodyne detectors and later show that it applies to ideal HEB mixers. Haus chose a
balanced mixer, which has the advantage that the fluctuations in LO power cancel to first order at the IF output. The
noise temperature of a balanced mixer should be the same as that of a single ended mixer if the mixer devices are
equivalent.

The result of Haus’ analysis is that the fluctuations in the IF output with no external signal present is equivalent to a
signal power corresponding to an expectation value for the photon number <ng> per observation time, of one photon.
Since the observation time 7 is the inverse of the bandwidth, B, of the system then P;-7=<ng>hf=hf, and the
equivalent noise power becomes /fB. This defines the minimum noise power one can have, the quantum noise. We
thus have the following important conclusion:

The minimum output noise of an IBBM SYSTEM corresponds
to an input noise power of 4fB 2)

Based on Eq. (1) we see that the sum of the minimum input noise powers for the signal and the image which we can
ascribe to the input source is also AfB. Since the vacuum input fluctuations already explain the output fluctuations,
there is no extra contribution required from the IBBM itself to satisfy the minimum system noise level. A second
important conclusion is then

The noise power added by an IBBM is ZERO 3)

The detailed analysis in Haus shows that the output fluctuations arise due to the properties of the commutator of the
signal and image field operators, respectively. As Haus notes, “one may interpret this result as fluctuations induced
by the signal (and image) zero-point fluctuations in the charge (or current) generated by the local oscillator
photons.”

In the ideal model for an HEB mixer, the IF current can be given a completely equivalent expression [9] to that for
the photodetector case: I« P P, Formally, the two types of mixers produce output currents which are

equivalent functions of the input photon fluxes, and we can thus directly apply the results of the analysis in Haus to
an (ideal) HEB mixer:

The noise power added by an Ideal Broadband HEB mixer is ZERO “)

The same minimum noise output power as in Eq. (2) was also derived for a general linear amplifier by Caves [5] and
many others. Wengler and Woody [7] showed that an optimum double sideband (DSB) SIS mixer operates in a
manner similar to an ideal photodetector, and approaches the same minimum output noise power. SIS mixers require
additional quantum considerations of the quantized charge in the device [9], which turn out in the ideal case to result
in zero added noise, as in the photo-detector mixer case discussed above. Reference [8] stated the same conclusion
as in (2), (3) and (4); that reference built on earlier papers analyzing quantum noise primarily in SIS mixers.
Reference [7] concludes that the only remaining noise source in an ideal SIS mixer is the process of “photon
absorption”. This reference added to previous analyses of SIS mixers a fully quantized model of the external circuit
to which the mixer input was connected. The above references thus are unanimous in reaching the same conclusion
as the one we stated in Eqgs. (2), (3) and (4). We see that the limiting tozal noise power is the same for any coherent,
phase-insensitive, receiver, whether an amplifier or a mixer, as expected on general quantum-mechanical grounds.

An ideal broadband receiver will consist of an IBBM with large photon number conversion gain, an [F amplifier,
and a power detector, as shown in Figure 1. Due to the relatively low IF frequency (a few GHz), a THz mixer will
always have a large photon number gain. Also, noise directly emitted at the IF (see below for details) should show
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negligible quantum effects due to the low IF frequency. Apart from quantum noise, a real mixer may show other
(classical) noise sources, T4“ . Also, the IF amplifier has a noise temperature, 7. We will disregard these
classical noise sources for the moment, and discuss them later. This is done since we are first trying to identify the
absolute minimum value which is allowed by quantum mechanics for the noise temperature. We further want to
define the system noise temperature and the receiver noise temperature of the circuit in Figure 1. In doing so we use

the convention that noise temperature is proportional to noise power [8], through

Pn = kY:lB (5)
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Figure 1. An IBBM receiver.

The system noise temperature is derived from (5) based on the noise power output of the entire system, including
both the receiver and the input sources. If we can neglect all other noise sources except the quantum noise, we find
from Fig.1 that

hf (6)

sys,SSB = 7

This is the quantum-limit for the system noise temperature of a broadband mixer receiver when performing narrow-
band measurements (within a single sideband) [8]. If we instead perform broadband (continuum) measurements, the
desired signal will be twice as large, and the ideal system noise temperature will be

hf %)

sys,DSB = 2_k

When calculating the receiver noise temperature, we will follow the usual convention [8] and subtract the noise
power of the input source(s) from the total system noise output. For the ideal receiver in Fig. 1, we have (for both
types of measurements)

Tec,DSB =0 ®)

F

The results (6), (7) and (8) agree with those given in a recent paper by Kerr, Feldman and Pan [8]. These authors
discussed a similar diagram as Fig. 1, and several others like it.

3. MEASUREMENTS OF THE NOISE TEMPERATURE OF HETERODYNE DETECTORS, INCLUDING
QUANTUM NOISE

A standard Y-factor measurement involves measuring the ratio of the output powers obtained from the receiver
when two input loads at different temperatures 7}, and 7., are inserted at its input. As proposed by Kerr et al.[8],
we use the CW expression (1) in the Y-factor expression to find the noise temperature.
THo _y.CHM
TRec psp = CW CW (9)
’ Y -1

Using Eq. (9) as written gives the total noise power added by the receiver, including QN, correctly. To find the
system noise temperature for DSB measurements, we add /#f/2k plus any thermal input noise temperature in the
particular system configuration:

h .
Ty psp = Treenss + % + Tpjgner (in) (10)
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4. MODEL FOR THE BROADBAND HEB RECEIVER

In what follows in this paper, we will make use of both the Callen-Welton expression, and the concept of an IBBM,
in order to estimate the minimum noise temperature of a broadband HEB receiver. The HEB device basically acts as
an absorber of the radiation (LO plus signal plus image), and has no shot noise. As explained earlier, we will assume
that an ideal, matched, broadband HEB receiver will approach the noise performance of the ideal heterodyne
detector, i.e. its noise output, referred to its input, will be given by Eq. (2), and the limit for its receiver noise
temperature is zero K, as stated in Eq. (8).

Any HEB mixer also necessarily produces noise output due to the fact that the HEB is a resistive device with finite
heat capacity and finite temperature. There are two “classical” noise sources to take into account because of this: (1)
Thermal fluctuation noise (Tr;) and (2) Johnson noise (7). The total is :

T(?Lu,tMIX = TFL + TJ amn

We use the subscript ‘CL’ (‘classical’) for this noise contribution. The typical magnitudes are T#~50-100 K, and
T~T,, which is about 10 K for NbN. We also need to include the noise temperature of the IF amplifier, 7, typically
about 5 K or less. Assuming now that the circuit properties of the upper and lower sidebands are identical (which
they are if fir<< f70) and that we add signals at the upper and lower sideband respectively, we have a situation as
indicated in Fig. 2: This figure summarizes the noise power flow for an ideal HEB mixer receiver, and the concepts
we have introduced so far. We have also introduced input RF losses, which will turn out to be very important for
the receiver and system quantum noise; these losses are actually the most important topic of this paper and will be
discussed in detail next.
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Fig. 2 Noise power flow in the HEB mixer receiver. The noise powers can all be translated into noise temperatures
by using Eq. (5).

5. NONIDEAL HEB DEVICE: INFLUENCE OF “SERIES RESISTANCE”

It is obvious that the traditional model for the HEB mixer, where the device is assumed to be a dimension-less
temperature dependent resistance, is a simplification of reality. It has recently been emphasized that it is important to
take the contact resistance into account [13,14,15], and this will add a non-active series resistance. Even more
important are the consequences of the hot-spot model [16], which suggests that the device at DC and IF frequencies
is essentially a normal conductor in a central “hot spot” region and superconducting near the contacts. It turns out
that the sensitivity to radiation absorption along the bolometer bridge is strongest near the boundary between the
hot-spot and the superconducting regions. In a forthcoming paper [2] we will present a more detailed discussion of
the influence of these effects on the QN, while in this paper we discuss a simple model which takes into account the
contact resistances and the division of the bolometer into active and passive regions.

In the simplified model, we assume that the bolometer at THz frequencies is composed of two resistors in series, R
(active resistance) and R, (passive resistance). Recent modeling work [16] indicates that R, may be of the order of
30 % of the full bolometer normal resistance, Rg= R,+R,. We assume that

(1) R, represents the actual mixer, modeled as an IBBM, which also provides a “classical” IF noise
output as given by (11),

(2) R, is modeled as a passive resistor in series with R, We use the Callen-Welton expression to
calculate the THz noise generated in R,,.

(3) Theratio Rg/R,; =p.

We insert an ideal circulator (Fig. 3) into our HEB model in order to take into account the fact that the active part,
R, is also radiating Callen-Welton noise into the input circuit (from port 2). The circulator emphasizes that R, is the
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IBBM input impedance and nothing else. We assume that the IBBM has zero receiver noise temperature, and acts as
a resistive load to the circuit to the left. In Fig. 3 we indicate that at the output of the HEB mixer to the IF circuit we
must also include the “classical” HEB noise according to Eq. (11), i.e.:

P IFout = 2PmG133M + ch?Z,thxB (12)

Note that G,BBM is the conversion gain from R, to the output port of the mixer device, see Fig. 3, and not the total

mixer gain. We next calculate the noise power entering the IBBM in one sideband, and then refer it to the source.
We get after some calculations [2]:

The HEB Mixer Device
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Figure 3. Model for the broadband HEB mixer only; optics not included.
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The first three different contributions in this expression are Planck noise related to respectively R, Ry, and R4, while
the last term is the quantum noise contribution. Notice that the 4fB/2 is multiplied by a term always larger than one.
Also notice that R, is part of the reasons for the existence of input losses (compare Fig.2).

Incidentally, non-ideal photodetectors are often characterized by using a quantum efficiency, n [4]. Wengler and
Woody also discuss the SIS mixer by introducing a quantum efficiency [7,17]. This is similar to our case; however,
the increased insertion loss in the HEB is resistive, and then the CW expression should be used to calculate the
modified noise properties.

6. RECEIVER AND SYSTEM NOISE TEMPERATURE FORMULAS FOR HEB THz MIXERS, INCLUDING
OPTICAL INPUT LOSS

To analyze the noise due to ordinary attenuation in the optics we first consider the situation described in Fig 4. The
optics part is represented by a two-port matched in both ends to R,. The “characteristic impedance” of the optics is
assumed equal to R,, i.e. there are no reflections anywhere. The optical circuit introduces an attenuation L., and
has a physical temperature of T, If T,=T,,, the noise power transmitted to the load ( P%') must be identical to

the noise power Pq(R,) from the source. Next consider Ts#Tpics. Then the noise contribution to PCLVT,’I ? from the

source is P, (R)-1/L,,  Whereas the contribution from the lossy two-port must be P” 'i"s(npii(‘:)- (1—1/ L, Pm,s),

Through similar calculations as performed above, we can now find the equivalent DSB receiver noise temperature
for the case when both sidebands are matched. In order to facilitate comparison with experimental results it is
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Fig. 4. A model for analyzing the equivalent noise from the quasi optical input circuit. Notice that both P%*and
PceyARy) obviously include the same equivalent noise power due to the vacuum fluctuations, #/B/2.

convenient to break L. up into contributions from components at room temperature, L3g, and at liquid helium
temperature, L,, respectively. We can then neglect Planck noise at 4 K, and finally obtain:

P (300K) LagoLy (pou
Lklff?—) : illﬂm[w Bl 22#(71%1@( + e amp) (14

MXR

TR[))(SB = (L300 -1

7. COMPARISON WITH EXPERIMENTAL RECEIVER NOISE TEMPERATURE DATA

In comparing experimental receiver noise temperature data with our predictions we will use Eq. (14), which assumes
that the bolometer is matched to the source, and that the sidebands have equal conversion loss. There is only one set
of data which extends far into the THz frequency range, up to 5.3 THz, that of the DLR/MSPU collaboration
(“DLR”), [18]. A recent paper at the 15" ISSTT gives two points, at 2.5 THz and at 3.8 THz, respectively
(“MSPU”), [19]. All other data sets have as their highest frequency 2.5 THz, and we will use measurements
performed by the Chalmers University group (“CTH”), [20], which presently represent the best measured values at
these frequenciesl. In order to compare these data with Eq. (14) we also need to know the optical losses, and these
are available in the DLR and CTH references. For the MSPU data we use the same optical losses as for DLR. We
found simple polynomial fits to the optical loss as a function of frequency, and used these in the calculations to be
described below. We extrapolated the optical losses to 10 THz based on these functions, beyond the highest
frequency measured.

Equation (14) has three terms: (TERM 1): The optical input loss (Planck) term. These losses are assumed to be at
300 K; TERM 1 is generally small.; (TERM 2): The QN term; (TERM 3): The Classical HEB mixer and IF
amplifier noise terms.

TERM 3 can be estimated from measurements at the lowest THz frequencies (1 to 1.5 THz), for which TERM 2 can
initially be neglected as a first step in an iterative process. By calibrating the mixer output noise power compared
with the case when the device is superconducting it is then possible to calculate T(QZIMIY, and Guxgx” = Gzpa/B. The

values of these two parameters also determine 7 psg. The IF amplifier noise temperature and the optical losses are
measured or estimated separately. This general type of method is described in greater detail in [20]. Note that the
classical HEB parameters are assumed to NOT depend on the frequency in the present paper. We can now determine
a value of B which provides a best fit of Ty psp calculated from Eq. (14) over the entire measured frequency range, by
iteration. Figure 5a shows fits of the three sets of data mentioned above, obtained in this way. A straight line is also
drawn for Try psg = 10xhf/k.

A reasonable fit can be found. In particular, the steep frequency dependence of the DLR data at the highest
frequencies is modeled well by our expression. We interpret the different noise temperatures obtained at the lower
frequencies as being due to less efficient HEB operation because of such effects as contact resistance and a large
value for R, outside the hotspot, which are expressed by the parameter 8 (compare the discussion in Sec. 5 above).

To get further insight into the results in Figure 5a, we plot the three terms in Eq. (14) separately in Figure 5b. We
use the CTH data. Note that even for the lowest THz frequencies (already employed in ground-based HEB

! Recent data from the DelftyESRON group are about equal to those obtained by CUT, but we do not have optical
loss data available for these.
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receiver systems, and soon to be employed in the first HEB mixers in a space instrument, Herschel) the QN
term and the classical HEB noise term are of comparable size! As the frequency increases further, the QN
term is predicted to rapidly become completely dominant. The curve for the classical HEB noise term also shows
a weak frequency dependence due to the optical losses which depend on frequency. The input Planck noise (TERM
1) is very small in comparison with both TERM 2 and TERM 3. Similar plots are obtained for the two other sets of
data. It is also of interest to note that if our extrapolation to higher frequencies of the best receiver noise
temperatures up to 2.5 THz, obtained so far, is correct, then it may be possible to obtain DSB receiver noise
temperatures of 10xAf7k (straight line in Figure 5b) or better, at least up to 6 THz, and with future
improvements of the devices and the optical coupling up to 10 THz. Our analysis also gives an indication that
improvements in device performance over the entire frequency range can be obtained by finding ways of decreasing
the value of g for the devices.

(1) TOTAL RX NT-->

10xhifk >

(3) CLASSICAL NT/:M.»

I

(4) PLANCK NT -->

(@ (b)
Figure 5(a). Fits of Eq. (14) to measured DSB receiver noise temperature data versus LO frequency from three
sources (the values used for § are given after the symbols used for the plots): (1) DLR [18] (x) (8=10); (2) MSPU
[19] (0) (=6); and (3) CTH [20] (+) (=4). The straight line represents Trx psz=10xAf7k.

Figure 5(b). Extrapolation of estimates of the three terms in Eq. (14) for the CTH data. The curves are (1) total
receiver noise temperature; (2) the QN term; (3) the classical HEB and IF amplifier term; and (4) the Planck term of
the optical input losses. The straight line again represents 10xAf/k.

10. CONCLUSION AND DISCUSSION

In this paper we derived an expression for the noise temperature of a “real” HEB receiver. This expression has two
main terms, the QN term and the “classical” HEB noise term. The ratio of these two terms goes from about one at
2.5 THz to about five at 10 THz, as the quantum noise “takes over”. By adjusting a single parameter, 8, we can fit
measured receiver noise temperatures as a function of frequency to this expression with good agreement. Since f
represents resistive division between active and passive parts of the bolometer, high conversion loss at the lower
THz frequencies is correlated with a more rapid increase of the receiver noise temperature at the highest THz
frequency range. The values we obtain for 8 from our fitting procedure agree well with those derived from the latest
hot spot model simulations. Although S is not determined with great accuracy (perhaps 20 %) the fact that a single
value for B suffices to describe the behavior over a wide frequency range for at least two sets of measured data
suggests that our model captures the basic features of the noise temperature variation with device quality and
frequency. Given this, one can be hopeful that HEB receivers in the reasonably near future can be developed
up to 10 THz that will have receiver noise temperatures of 10xAf/k or better. Such receivers, particularly in the
form of focal plane arrays, are required for planned NASA projects in this frequency range such as SAFIR. Clearly,
a much larger set of measured data is required to more definitely confirm or disprove the validity of the fundamental
picture of HEB operation over a wide frequency range that we present. It appears possible to separate through more
extensive measurements the two main terms in our noise temperature expression, and we plan to pursue such
measurements and present the results in a future paper.
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