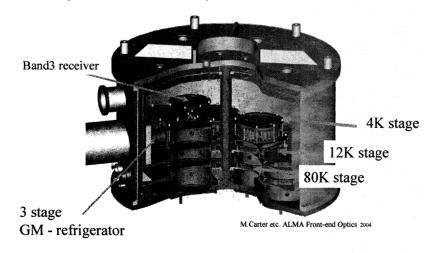
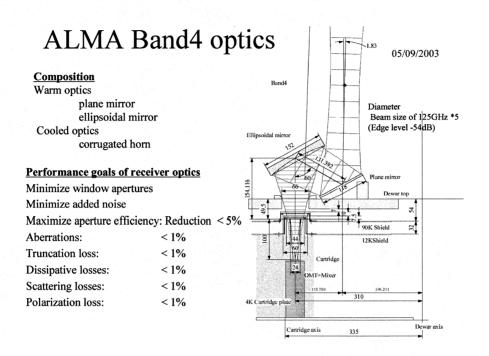
### ALMA cartridge-type receiver system for Band 4

K.Kimura1, S.Asayama4, T.Nakajima1, N.Nakashima1, J.Korogi1,
Y.Yonekura1, H.Ogawa1, N.Mizuno2, K.Suzuki2, Y.Fukui2, H.Andoh3,
Y.Sekimoto4, T.Noguchi4 and A.Yamamoto5

1Osaka Prefecture University, Japan 2Nagoya University, Japan 3Toyota National College of Technology, Japan 4National Astronomical Observatory, Japan 5Mitsubishi Electric Tokki System

We are developing the ALMA (Atacama Large Millimeter/Sub-millimeter Array) Band4(125--163GHz) receiver. Individual ALMA frequency bands are implemented asself-contained cartridges. The cartridge-type receivers are mounted in the 4 K dewar on the Cassegrain receiver cabin of ALMA 12m telescope. The receivers are asked to receive two linearly polarized orthogonal signals. The diameter of the Band 4 cartridge is 140 mm.


#### **Specifications**

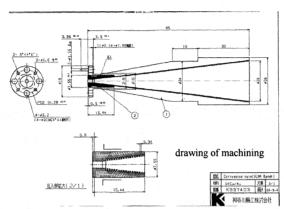

- Freq 125—163GHz
- Trx(SSB) over 80% \_ 47K (goal 26K) any freq \_ 76K (goal 40K)
- Two linear orthogonal polarizations
- Max. cross-polarization -20dE
- Sidebands DSB or <u>2SB</u> (10dB image band suppression)
- IF bandwidth 4GHz 2SB,upper and lower sideband



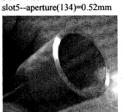
### ALMA dewar

Ten cartridge-type receivers are equipped with in ALMA dewar. Band 4 receiver is located in 335mm offset from the center of dewar. A position of band 4 receiver is symmetric with band 3 receiver.





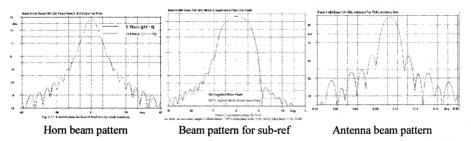

# Optics parameter(Band4)


| Frequency (GHz)<br>(mm)            | Design<br>Parameters | 125<br>2.398340 | 144<br>2.081892 | <b>163</b><br>1.839218 |                                     |
|------------------------------------|----------------------|-----------------|-----------------|------------------------|-------------------------------------|
| Hom diameter                       | 24.0                 |                 |                 |                        |                                     |
| Horn axial length                  | _100.040             |                 |                 |                        | This optics are calculated by the   |
| Horn slant length                  | 100.757              |                 |                 |                        |                                     |
| Horn waist, wo                     |                      | 6.103           | 5.760           | 5.431                  | frequency independent matching of   |
| Horn waist offset, $z(w_0)$        |                      | -37.8211        | -44.704         | -50.923                | gaussian beam(TA-SHING 1983 IEEE).  |
| Waist at horn aperture, who        |                      | 7,722           | 7,722           | 7.722                  | 1 -                                 |
| d <sub>1</sub> 15                  | 4.116                |                 |                 |                        | In any frequencies, Shape of a beam |
| $R_{s1}$ 21                        | 1.417                | 204,339         | 211.423         | 217.416                |                                     |
| f <sub>i</sub> 15                  | 0.474                |                 |                 |                        | becomes equal in a sub-ref and horn |
| $R_{i1}$                           | 522,006              | 570.832         | 521.972         | 488.714                | aperture.                           |
| Waist at murror I, w <sub>Ml</sub> | (dia = 152)          | 24 773          | 23.590          | 22.761                 | uperture.                           |
| 1<br>d <sub>2</sub>                | 60,0<br>128,268      |                 |                 |                        |                                     |
| Waist at mirror 2, w <sub>M2</sub> | (di a. = 118)        | 19 496          | 18,033          | 16.981                 |                                     |
| 2                                  | 61.834               |                 |                 |                        |                                     |
| Zw(Cass.) 24                       | 5.188                | 248.091         | 245,107         | 243.102                |                                     |
| W'Cass.                            |                      | 14.343          | 12.453          | 11.004                 |                                     |
| d <sub>mirror-subscill</sub>       |                      | 6367,356        | 6367,356        | 6367.356               |                                     |
| W subsetl                          | (dia = 750)          | 319 035         | 319 035         | 319.035                |                                     |
| R <sub>subredi</sub>               | 6000.00              | 6000,000        | 6000,000        | 6000.000               |                                     |
| Edge Taper (dB)                    | 12.00                | 12.00           | 12.00           | 12,00                  |                                     |
| Multimode E Taper (dB)             |                      | 9.50            | 9.50            | 9.50                   |                                     |

### Design of corrugated horn (Band4)

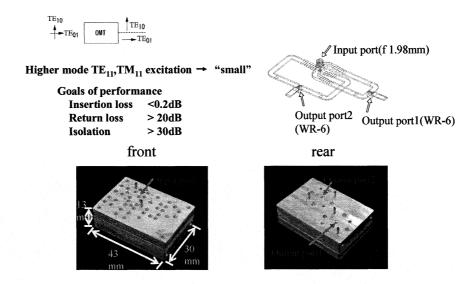
Now We are producing the corrugated horn by a method of electro-former or machining.



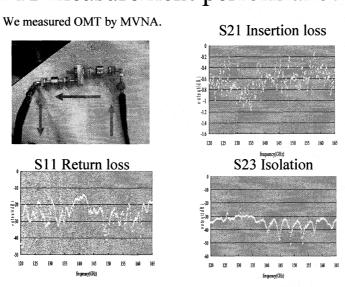

Slot width 0.34mm Ridge width 0.34mm Slot depth slot1=0.80mm slot2=0.68mm slot3=0.60mm slot4=0.55mm



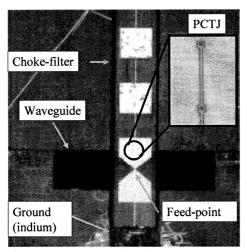
horn made by machining


## Simulation of radiation pattern

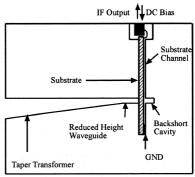
A pattern of corrugated horn and an antenna pattern do simulation by GRASP8(TICRA). GRASP8 is based on well-established analysis techniques such as Physical Optics (PO) supplemented with the Physical Theory of Diffraction (PTD), Geometrical Optics (GO) and Uniform Geometrical Theory of Diffraction (GTD).



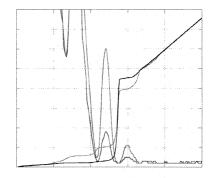

Simulation by C.Y.Cham etc. (University of Cambridge,UK)


### Band4 Ortho Mode Transducer (OMT)



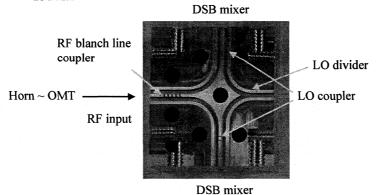

## OMT measurement performance




# Half reduced height mixer mount for ALMA Band4



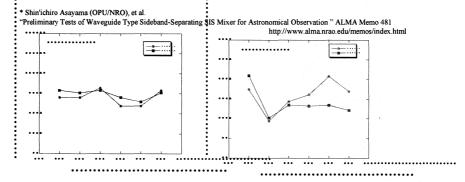




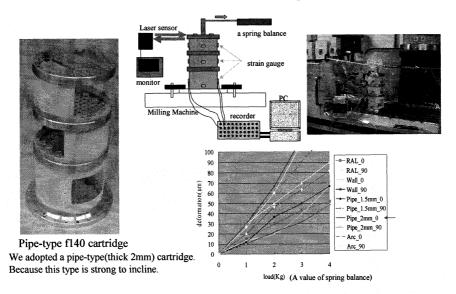

## Band4 DSB mixer results



# Sideband-Separating Mixer Unit for ALMA BAND 4


The Sideband-Separating Mixer Unit contents two LO coupler, an RF blanch line coupler and LO divider.




# Receiver noise temperatures of ALMA Band4 Sideband-Separating Mixer

principle, the image rejection ratio of a receiver can be measured by injecting CW signals of known relative amplitudes into the upper and lower sideband measuring each IF response. At millimeter wavelengths, however, it is difficult to determine with sufficient accuracy the relative amplitudes of two RF signals separated in frequency by twice the IF frequency. In case of a sideband-separating mixer, the image rejection ratio can be measured accurately injecting CW test signals in the upper and lower sidebands, even when the relative power level of the test signals are not known (\*). In a ideal sideband-separating mixer, CW signals

into the upper sideband and lower sideband appears separately at the two output ports. Since the image rejection ratio of an actual mixer is not perfect, a CW signal into one sideband appears at both IF output ports. In this case, the image rejection ratio can be determined by measuring the difference in the peak value referred to the noise revel at the corresponding output.



### The measurement of cartridge distortion



### Conclusion

We are developing the ALMA Band4 cartridge-type receiver.

#### Development

+ Receiver optics

Design is end.

+Corrugated horn

In evaluation of a prototype.

+OMT

In evaluation of a prototype.

+ Sideband-Separating Mixer

In evaluation.

+Cartridge

Decision of a design. In production.

We are designing and assembling the receiver systems. We aim at production of the first receiver system within 2004.