
 
Abstract—A single sideband SIS mixer with a 4-8 GHz IF 

band and covering the RF frequency range of 200 to 265 GHz 
has been developed and characterized. This mixer will be 
integrated into band 3 of the new generation receivers for the 
Plateau de Bure interferometer. LSB noise temperatures as 
low as 40 K could be obtained over the whole LO frequency 
range. USB noise temperatures are slightly higher.   
 

Index Terms—single sideband mixer, SIS mixer 

I. INTRODUCTION 

RAM is currently developing new generation receivers 
for the six element Plateau de Bure interferometer. These 

receivers will cover the four frequency bands 83-115 GHz, 
129-174 GHz, 200-265 GHz, and 275-373 GHz, each with 
two polarizations, single-sideband operation, and an IF band 
of 4 to 8 GHz. Installation is foreseen before winter 
2006/2007. 

This paper presents design and characterization of a 
single sideband SIS mixer for band 3 (initially defined from 
200 to 260 GHz) using a moveable backshort for image 
rejection. 

II. RF DESIGN 
The design of this mixer is quite similar to the one 

designed for ALMA band 7[1]. A layout of the mixer chip is 
shown in Fig. 1. The mixing element is a 1µm2 Nb-Al/AlOx-
Nb tunnel junction made by e-beam lithography [2]. This 
junction is embedded into a superconducting circuit 
consisting of the antenna, the RF choke, and the tuning 
structure.  

antenna junction contact pads

tuning circuit rf choke  
Fig. 1.  Layout of the mixer chip with a size of 2.5 × 0.35 × 0.1 mm³. 
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The antenna providing the full-height waveguide to 

suspended microstrip transition consists of a probe structure 
on a quartz substrate which is placed in a channel 
perpendicular to the waveguide axis and stretches partly into 
the waveguide as can be seen in Fig. 2. Behind the mixer 
chip a backshort can be moved inside the waveguide.  

 

rf input

backshort

 
Fig. 2.  Full-height waveguide to microstrip transition. 

In order to evaluate the antenna impedance, simulations 
using CST Microwave Studio [3] were carried out for a 
large distance between junction and backshort. Fig. 3 shows 
the result of such a simulation for frequencies between 200 
and 260 GHz and a distance of 30 mm between junction and 
backshort. The Smith chart is normalized to 60 Ω. Since the 
circles move around the center of the chart, antenna 
impedances around 60 Ω are obtained for matched 
backshort positions.  

Zref = 60 Ω  
Fig. 3.  Antenna impedances for frequencies between 200 and 260 GHz and 
a backshort distance of 30 mm. Smith chart is normalized to 60 Ω. 

The superconducting tuning circuit is the same as in [1] 
adapted to the PdBNG band 3 frequency range using Sonnet 
[4] and ADS [5]. A photo of a fabricated mixer chip with a 
close-up of the tuning structure is shown in Fig. 4. The 
equivalent circuit is presented in Fig. 5.  
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Fig. 4.  Photo of the tuning circuit. 

Compensation of the junction’s capacitance is achieved 
with a parallel inductance consisting of a coplanar 
waveguide. A delta-stub creates the virtual ground. The 
delta-stub has been chosen in order to limit the parasitic 
capacitances and ensure a large IF bandwidth. A λ/4-
transformer finally provides matching to the antenna 
impedance.  
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Fig. 5.  Equivalent circuit of the tuning structure. 

The mixer has been designed to work in USB mode for 
the upper end of the RF band and in LSB mode for the 
lower frequencies. In the middle of the band there is a 
choice of USB or LSB operation. For each LO frequency a 
backshort position can be found providing an optimum 
match at the USB (LSB) frequency and simultaneously 
presenting a reactive termination to the junction at the LSB 
(USB) frequency. Fig. 6 shows an example for a signal 
frequency of 230 GHz. The Smith chart on the left-hand 
side shows the embedding impedance of the junction for a 
backshort distance of 3.590 mm. For this backshort position 
the frequency band of 228 to 232 GHz is well matched 
whereas for frequencies between 216 and 220 GHz a 
reactive termination is presented to the junction. Hence, this 
position corresponds to observing at 230 GHz in USB 
mode. The Smith chart on the right-hand side in Fig. 6 
shows the embedding impedance of the junction for a 
backshort distance of 6.085 mm. The frequency band of 228 
to 232 GHz is still well matched, but now the junction sees 
a reactive termination for frequencies between 240 and 244 
GHz. Accordingly the mixer is set to LSB operation for a 
signal frequency of 230 GHz.  

fimage = 216 –220 GHz

fimage = 240 –244 GHz

fsignal = 228 –232 GHz fsignal = 228 –232 GHz

lbs = 3.590 mm lbs = 6.085 mm

 
Fig. 6.  Example of observing at 230 GHz. Left: Embedding impedance of 
the junction for a backshort distance of 3.590 mm corresponding to LSB 
operation at 236 GHz LO frequency. Right: Embedding impedance of the 
junction for a backshort distance of 6.085 mm corresponding to USB 
operation at 224 GHz LO frequency. Both Smith charts are normalized to 
the junction's RF impedance. 

In order to obtain the matching of the junction over the 
whole RF frequency range backshort positions are 
determined for each LO frequency for both USB and LSB 
operation of the mixer and the junction’s embedding 
impedance is calculated. The result is shown in the Smith 
chart in Fig. 7 for signal frequencies between 200 and 260 
GHz for LSB (grey line) and USB (black line) operation.  

Zref = Zrf

 
Fig. 7.  Embedding impedance of the junction. Smith chart is normalized to 
the junction's RF impedance. LSB operation is represented by the grey line, 
USB operation is plotted in black. 

A good match could be obtained over the whole 
frequency range as can also be seen by the plot in Fig. 8 
representing the fraction of power coupled to the junction. 
For all signal frequencies more than 97% of the incident 
power is coupled to the junction. In the middle of the band 
USB and LSB operation give the same theoretical results. 
Hence, coupling to the junction does not depend on LSB or 
USB operation, but only on the signal frequency. 

16th International Symposium on Space Terahertz Technology

34



 

 
Fig. 8.  Fraction of power coupled to the junction. LSB operation is 
represented by the grey line. The black line indicates results for USB 
operation. 

III. MIXER BLOCK AND MAGNETIC YOKE ASSEMBLY 
The actual mixer block consists of a front and a rear 

block with a waveguide going through both (see Fig. 9). A 
mechanism for moving the backshort inside the waveguide 
is fixed to the rear part. The IF circuit consisting of a 50 Ω 
line realized as microstrip with a Rodgers 4003 substrate is 
mounted into a substrate holder which is fixed on top of the 
mixer block. The mixer chip is contacted via bonding wires 
to the block and the Rodgers microstrip. A local magnetic 
field is applied to the junction in order to suppress 
Josephson currents, which are a source of mixer noise and 
instability. For this purpose a custom-made superconducting 
magnet and yoke assembly is attached to the mixer block 
(not shown on the photo). For mixer tests the block is 
mounted directly onto an LO coupler. In order to better 
demonstrate the RF input a feedhorn has been mounted onto 
the mixer block for the photo shown in Fig. 9. 

hole for magnetic yoke assembly

backshort mechanismIF circuit

RF in

IF out

 
Fig. 9.  Photo of the mixer block with feedhorn, backshort mechanism, and 
IF circuit. 

 

IV. NOISE MEASUREMENTS 
So far only one batch of junctions with results for normal 

state resistance and area close to the design values has been 
fabricated and three junctions have been tested as mixers. A 

representative result of the noise measurements is shown in 
Fig. 10. For LSB operation noise temperatures around 40 K 
could be obtained over the whole LO frequency range (grey 
circles). USB noise temperatures are between 40 and 70 K 
(black squares).   

 
Fig. 10.  SSB noise measurements of junction 11-34-02. LSB noise 
temperatures are represented by the grey circles. USB results are plotted 
with black squares. 

The increase of noise for USB operation and signal 
frequencies above 255 GHz indicates that the junction’s 
capacitance is higher than assumed in the design. 
Consequently the noise performance at the upper frequency 
end might be improved by employing smaller junctions. 

V. IMAGE REJECTION 
Since the backshort position can only be optimized for 

the rejection of one distinct frequency, image rejection is a 
critical issue of backshort mixers, especially for large IF 
bands. Fig. 11 shows the image rejection obtained for an LO 
frequency of 231 GHz with the backshort set to USB 
operation. Note that the backshort position was not changed 
during the measurement. As expected, best values are 
obtained in the middle of the IF band. But even at the IF 
band edges an image rejection of better than –10 dB could 
be achieved. 

 
Fig. 11.  Image rejection as function of the IF frequency measured for USB 
operation at fLO = 231 GHz. 

VI. CONCLUSIONS 
A single sideband SIS mixer for band 3 of the new 

generation receivers for the Plateau de Bure interferometer 
has been successfully developed, fabricated and 
characterized. Initially designed for the RF frequency range 
of 200 to 260 GHz it works well up to 267 GHz, thus 
covering the later extended PdBNG band 3 frequency range 
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of 200 to 265 GHz. Because of its low static capacitance it 
works without IF impedance transformer over the whole IF 
band of 4 to 8 GHz. Noise temperatures of 40 K could be 
obtained for LSB operation over the whole LO frequency 
range. USB noise temperatures are between 40 and 70 K 
and might be improved by employing smaller junctions.  
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