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Abstract— Dielectric properties of materials important for
production of high-speed electronic devices are studied in the
sub-terahertz region. For characterization of a thin SiO2 film we
have developed the Grazing Angle Etalon (GAEA) method [1].
Theoretical calculations are based on recurrence relations for
transmittance and reflectance coefficients of multilayer system
[2].

I. I NTRODUCTION

Let a s-polarized plane wave is incident at angleθ0 on a
plane-parallel plate. Interference of electromagnetic waves in
the plate results in periodically located maxima and minima
in the transmittance spectra. Maximum intensity appears when
the phase differenceδ between the incident and transmitted
beam fullfills the condition [2], [3]

δ =
2π

λ
nd cos θ = mπ, m = 1, 2, 3, ... (1)

where λ, θ, n and d are wavelength of the incident light,
angle of refraction, index of refraction and thickness of the
plate, respectively. The maxima are sharper and the distance
between them is larger for higher angle of incidenceθ0, whilst
their height remains constant (Fig. 1). The narrowing of peaks
is caused by an increased reflectivity of the plate surfaces at
grazing angles of incidence. The distance between the maxima
is enlarged since the effective optical thickness is decreased by
factorcos θ and condition (1) is satisfied at higher frequencies.

Fig. 1. Transmittance spectra calculated for a plane-parallel silicon substrate.

In Fig. 2 we show a transmission peak in the silicon
substrate calculated for several angles of incidence ands-
state of polarization. If the substrate is coated with a SiO2
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thin film, position of the peak shifts slightly towards lower
frequencies. The presence of the small shift is manifested in
the relative transmittance spectra by a maximum-to-minimum
structure which becomes larger with increasing incident angle,
as can be seen in Fig. 3. The best fit of the theoretical curves to
measured relative transmission data may be used to determine
the complex refractive indexnf and dielectric constantεf = n2

f

of the film. The technique described above is called Grazing
Angle Etalon (GAEA) method [1].

Fig. 2. Position of the transmission peak in bare (–) and coated (- -) substrates.

Fig. 3. Maximum-to-minimum structure in the relative transmission.

II. EXPERIMENT

The sample was a non-doped silicon wafer 700µm thick,
100 mm in diameter coated on both sides with 2µm thin SiO2

films. Thickness of the silicon substrate was selected to obtain
one peak in the measured frequency range. The thin SiO2 films
were prepared by thermal oxidation of the Si wafer at 1200◦C.
Half of the films areas were removed from both sides of the
wafer using hydrogen fluoride acid.
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The experimental setup used for measurement of transmis-
sion is shown in Fig. 4. The source of millimeter waves
comprised the signal generator connected to the frequency
multiplier chain by a RF cable. The waves in the 50-75
GHz frequency band were transmitted to a free space using
a horn antenna, focused by lenses and, after passing through
the sample, were focused to horn antenna receiver equipped
with a Schottky diode detector. Amplitude modulation of the
generator output at 20 kHz allowed easy signal detection by
a lock-in amplifier and a fast spectra scanning.

Fig. 4. The transmission measurement setup.

III. R ESULTS

Measured spectra of relative transmission defined as the
ratio of transmission of the substrate coated with the film to
that of the substrate without film are shown in Fig. 5. Dashed
lines represent theoretical calculations fors-polarized waves
incident at grazing angles of 70◦, 75◦ and 80◦, film thickness
df = 2µm on both sides of substrate, index of refractionnf

=2.0+0.4i and substrate parametersd =700µm andn = 3.4+0i.
The theoretical curve agrees fairly well with the experimental
data forθ0 = 70◦. At higher angles of incidence the measured
spectra are distorted by some additional oscillations, but their
overall shape seems to be consistent with the theory. From the
index of refraction we obtain the complex dielectric constant
of the SiO2 film εf = n2

f = 3.84 + 1.6i. Whereas the real
part of the dielectric constant shows good agreement with
the data published by other authors [4], the imaginary part
indicates rather high loss in the film under study. We estimate
the complex refractive index on the assumption that there is
only one maximum-to-minimum structure in the relative trans-
mittance spectrum. With the increasing real part of refractive
index, the difference between maximum and minimum of the
relative transmittance is increasing. When the imaginary part is
zero, the middle point of relative transmittance remains unity.
However, with the increasing imaginary part of the refractive
index, the middle point moves below unity. In our opinion
a superposition with another structure, which is seen in Fig.
5 (b) and (c), may be responsible for the lower value of the
middle point and the higher estimate of the imaginary part of
the refractive index.

Fig. 5. Measured (–) and calculated (- -) relative transmission spectra of
SiO2 thin film on the silicon substrate.

IV. CONCLUSION

Despite of the problems mentioned in the previous section,
the Grazing Angle Etalon (GAEA) method [1] seems to be
suitable for extracting material constants of thin films from
the measured relative transmition spectra. The method attains
enhanced sensitivity at grazing angles of incidence and makes
possible to characterize low-dielectric constant thin films even
when nfdf ¿ λ and other quasi-optical methods are hardly
applicable.
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