
 

  
Abstract—We are developing an imaging radiometer based on 

concept of direct connection of superconducting TES detector to 
a planar antenna. To control a large-dimension imaging array, 
multiplexing procedure via method of projection is suggested; the 
antenna array and the image are rotating reciprocally in their 
common plane during the signal integration process. Each 
crossed double-slot antenna feeds two TES detectors integrated 
in the central part of the antenna via a combination of microstrip 
and coplanar transmission lines. The instantaneous bandwidth of 
50% is estimated for 5-Ω TES detector tuned at 600 GHz. The 
coupling circuit with overlapping RF feed-lines demonstrated 
cross-talk interference below -30 dB. Infinite expansion of the 
array is possible while the number of output leads can be 
minimized to N + M for N by M array; the continuous signal 
integration is available for all pixels. The design and analysis are 
performed using commercial EM-software. 
 

Index Terms—Bolometer, imaging array, method of 
projection, slot antenna, transition edge sensor. 
 

I. INTRODUCTION 
superconducting transition-edge sensor (TES) bolometer 
[1]-[3] consists of a radiation absorbing element attached 

to a superconducting film with a transition temperature Tc, 
which is weakly coupled to a heat sink at temperature 
T0 ≈ Tc/2. The superconducting film is heated by a bias source 
to an operating point within superconducting transition, where 
its resistivity is very sensitive to temperature changes. Since 
the bias voltage is fixed, the bias current through the TES is 
temperature-sensitive (optical signal sensitive), and it can be 
coupled to an ultra-low-noise amplifier based on a 
superconducting quantum interference device (SQUID 
amplifier).  
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The voltage bias introduced by Irwin [4] provides a 
negative electrothermal feedback, which stabilizes the 
temperature of the TES at the operating point on the 
transition. The electrothermal feedback keeps the total power 
input constant. This negative-feedback TES bolometer has 
advantages of good linearity and wider bandwidth; they can 
be produced by thin-film deposition and optical lithography, 
so they are suitable for large format arrays.  

The absorption of RF power can be realized either directly 
within radiation absorption pads [5]-[10] or via combination 
of antennas and transmission lines heating the absorber. The 
antenna-coupled TES bolometer development [11]-[15] is just 
beginning, and it still tends to employ traditional thermally 
isolating legs or very thin membranes. Fortunately, the small 
area of integrated antenna terminations makes possible using 
TES absorber directly deposited on the silicon substrate 
without any legs for thermal isolation. At temperatures 0.1 K, 
the weakness of the electron-phonon interaction impedes the 
flow of heat from the metal into the dielectric substrate and 
can provide values of thermal conductance that are 
appropriate for low-background astronomical bolometers.  

In our antenna-integrated TES, similar to [16]–[18], the 
extra weakening of the electron–phonon interaction is 
assumed via Andreev electron-reflection effect at the interface 
between the submicron-size absorber and leads of the antenna 
made from a higher-Tc superconductor (Nb). For our Mo/Cu 
absorber (Tc = 0.1-0.3 K) [19] operating within its 
superconductor transition region, the RF current from antenna 
assumed to be the source of hot electrons within the absorber. 
The heat escape from the absorber is limited by the above-
mentioned Andreev mirrors, and the goal of producing 
bolometers with NEP ≈ 10-18 W Hz1/2 and below can be set. 

To control a large-dimension imaging array, the 
multiplexing procedure via method of projection, when the 
array and the radiation source image are rotating reciprocally 
in their common plane, is suggested [20]. Since the sky 
objects usually emit both polarizations, the projections method 
needs both polarizations to be analyzed. To receive both 
polarizations independently, a crossed double-slot antenna 
(CDSA) is used [21], but unlike in [15], we assume direct 
connection of TES to the leads of antenna.  

To read and amplify output signals from the array, a 
concept of SQUID-amplifier working in a frequency 
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multiplexing mode [22] is being developed as a part of the 
imaging array research. The method of projections allows for 
minimizing the number of output leads to N + M for N × M 
array, since it assumes the connection of all detectors within a 
row and a column in parallel for their bias voltages and output 
currents. To resolve a 2-D image, the rotation of the image in 
respect to the array is assumed using, for example, a K-mirror 
system. Note that a full-time signal accumulation is possible 
for all elements of the imaging array. 

Present paper describes our approaches for designing a 
practicable array antenna, which can work with TES detectors 
at submillimeter wavelength. 

 

II. DETAILS OF DESIGN 

A. Antenna Packaging 
The distance between elementary antennas can be found 

using requirements for their beams’ overlapping. The beams’ 
overlapping level can be defined according to desired 
sampling technique. We have chosen the under-sampling 
factor of four that allow the space between neighboring beams 
is just enough for accommodating another beam. This means 
that complete mapping of the image can be achieved via two 
samplings for each axis: to fill in a 2-D image four samplings 
are needed. The intersection level (taper level) is chosen at 
about -10 dB for two reasons. 1) Such low taper allow for 
clear separation of two neighboring pixels of the image, which 
has high pixel-to-pixel contrast. 2) High taper (say, -3 dB) 
means direct (on-chip) interference (cross-talk) of the 
integrated antennas via common RF currents that is in 
contrary with the wish of high-resolution imaging. Fig. 1 
presents the antenna package with separation of 2λ (center-to-
center) that provide low cross-talk between all components of 
the array as shown in Fig. 2. The extremely low cross-talk 
between the two polarizations of a crossed double-slot antenna 
(CDSA) is illustrated in Fig. 3 via the visualization of the 
current density distribution.  

B. RF Coupling Circuit and DC Interconnections 
Each pixel of the array contains two coupling circuits 

feeding two TES detectors integrated in the central part of the 
CDSA. These two circuits must overlap as shown in Fig. 3. 
Since the polarization separation properties of the two 
antennas (of the CDSA), each detector is sensing only one 
polarization. To connect each slot-antenna to its own TES 
detector, the combination of microstrip and coplanar 
waveguides is used. Since the output impedance of a slot 
antenna is about 50 Ω that is essentially higher than the 
resistance of the TES detector (0.5-5 Ω), a careful impedance 
transformation has to be considered. We have found that the 
problem of RF coupling of the low-resistive TES detectors is 
somewhat similar to the well-known problem of coupling SIS 
detectors [3]. The impedance of a small (low-resistive) TES is 
presumably reactive (inductive), and it needs to be tuned with 
a capacitive tuner, which can be provided by 

a fraction of a microstrip line (L < λ/4). We have estimated the 
bandwidth of about 50% for a 5-Ohm TES detector tuned for 
central frequency 600 GHz as shown in Fig. 4. Note that a 
narrower RF bandwidth (narrow-band filtering) can be 
provided simply via extra inductance in series with TES that 
result in higher Q-factor of the circuit.  

To achieve the best symmetry on the two detector circuits, 
their overlapping is arranged on the base of coplanar 
waveguide (CPW) that allow for using only two metal layers 
as shown in Fig. 5. The CPW solution helps to minimize the 
asymmetry of the detectors in respect to the ground plane. In 
spite heavy cross-talk interference between overlapping CPW 
lines looks highly probable, we estimated the cross-talk below 
-30 dB at 600 GHz as presented in Fig. 6. Extra measures 
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Fig. 2.  Parasitic coupling between neighboring antenna elements of the 
array from Fig. 1. Simulation performed for CDSA positioned in the corner 
of the chip.  

 

Fig. 1.  Layout of array antenna. Each crossed double-slot antenna provides an 
elementary cell (pixel) marked by circle. Infinite multiplication is possible 
while keeping same complexity of the wiring. 
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can be taken for further reducing of the cross-talk as 
illustrated in Fig. 5 and Fig. 6.  

The DC filters of the antennas (RF band-stop filters) are 
designed using alteration of λ/4-long CPW and microstrip 
waveguides that is clearly seen in Fig. 3. The CPW lines are 
formed by opening λ/4-long holes in the ground plane of the 
microstrip lines. The extensions of the RF filters at horizontal 
and vertical directions (see Fig. 3) form the DC bias/output 
signal wires, which are connecting all detectors in parallel for 
each column and for each row of the antenna array. This allow 
for virtually infinite expansion of number of pixels in the 
array without essential growing of complexity of the DC 
bias/read-out circuit. The presented simulations, including the 
antennas’ impedance, are performed using commercial 2.5-D 
electromagnetic software (“Microwave Office” 
[23]).

 
C. Optical System and Cryostat 
It is known that most of planar antennas are the low-gain 

antennas which have a very broad beam (typically wider than 
90 degrees). To couple such antennas to the high-gain 
telescope beam, an intervening optics is necessary. The most 
advanced techniques of printed antennas employ the 
immersion-type lenses: hyper-hemispherical or truncated 
elliptical lenses [24]. It is important that the elliptical lens can 
work in the diffraction limit. This means it can offer the 
ultimate gain providing the beam waist at its aperture. Fig. 7 
presents the optical concept for the integrated antenna array 
from Fig. 1 placed on the back of a truncated ellipsoid. We are 
going first try a small 9-pixel array of 3 by 3 pixels. To 
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Fig. 4.  Simulation of antenna coupling with 5-Ohm TES bolometer. 

Fig. 3.  RF currents at 600 GHz for the cell-antenna from Fig. 1 (simulation). 
Red and blue colors present high and low current density accordingly. 
Microstrip lines in the wiring layer provide both RF coupling and DC 
filtering. 
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Fig. 6.  Cross-talk level for the overlapping RF circuits from Fig. 5 
(simulation). Result of improvement in cross-talk isolation at about 600 GHz 
is presented by the two curves that achieved via careful design of the 
asymmetric cross-hole as shown in Fig. 5. 

R1 
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Fig. 5.  Design of cross-line region providing best cross-talk isolation; internal 
ports R1 and R2 stand for two TES-detectors. Absolute symmetry of the 
structure is not possible, since detectors cannot be fabricated on top of each 
other. 
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achieve low spherical aberrations, the diameter of ellipsoid is 
estimated as 25 mm for our case. 

To reduce the heat load to the milli-Kelvin stage and the 
detector, the infra-red (IR) filters are necessary along with 
proper focusing of the array beam at the smallest possible 
apertures of the thermal shields of the cryostat. The pure 
mono-crystalline silicon is a good material for both low-loss 
terahertz optics and efficient IR filters. The preliminary design 
concept shown in Fig. 7 assumes two long-focusing silicon 
lenses as the intervening optics in combination with three 
additional IR filters (scattering filters of narrow-band mesh 
filters). 
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Fig. 7.  Optical scheme of the imaging array TES-radiometer mounted within 
the ultra-low temperature cryostat. 
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