
 

  
Abstract—Conceptual design of waveguide and quasioptical 

mixers for ALMA Band-10 is presented along with SIS chip 
performance estimates. A combination of NbTiN/Al tuning 
circuit with the Nb-based high current density SIS junctions 
employing AlN tunnel barrier (A = 0.5 µm2, Jc= 15 - 20 kA/cm2) 
is suggested as the base-line. The following parameters are 
expected for a 20-Ω SIS mixer: Gm= -7.5…- 9 dB, 
Tm <200 K (DSB), PLO< 1 µW at 950 GHz. Tunerless full-height 
waveguide (280 µm × 140 µm) mixer will employ a single-side 
chip probe-antenna configuration. A chip-package concept is 
under development for quick mounting (replacement) of serial 
mixers. Quasioptical mixers will be used for material research 
and as an option for a weak LO source. A quasioptical balanced 
mixer can reduce LO power requirement down to only 3-5 µW 
for the whole two-polarized cartridge along with essential 
simplification of its optical scheme. The IF range of 4-12 GHz is 
simulated successfully for the quasioptical mixers. 

 
Index Terms—Balanced mixer, quasioptical mixer, SIS mixer, 

slot antenna, SNAP process. 
 

I. INTRODUCTION 
HE Band-10 (787 – 950 GHz) is currently the highest 
frequency range of Atacama Large Millimeter and 

Submillimeter Array (ALMA) [1], which employs the 
quantum-noise-limited SIS mixers [2]. The difficult point in 
designing the front-end mixer is that whole frequency range 
spreads far above the gap-frequency of Nb (≈ 700 GHz), so 
this material cannot be used for tuning circuit of a SIS 
junction; the use of normal metals or higher gap-frequency 
superconductors has to be considered [3]. To achieve the 
ALMA Band-10 specification for the receiver noise 
temperature in the double-side-band regime (DSB), TRX ≤ 230 
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for 80 % of the band and TRX ≤ 345 K for any point of the 
band [4], both the SIS junction technology and the materials 
for the tuning circuit must be selected very carefully.  

There are not many choices for a beam launcher. The 
corrugated horn antenna is known for its high-quality beam 
properties. In spite of severe mechanical tolerances, which are 
about 10 µm, the feasibility of corrugated horn antennas is 
proven within 800-1000 GHz frequency range by a number of 
experiments (e.g. HIFI and ASTE projects) [5], [6]. The 
waveguide approach applies severe mechanical requirements 
also to the mixing chip: typical dimensions of the chip will be 
about 500 × 50 × 30 µm3. This makes chips difficult to 
process/handle and may slow down the research phase of the 
project.  

Another approach is the well-known integrated lens-
antenna [7], [8]. Although the beam quality of known lens-
antennas is not as good as for horn launchers, this direction is 
growing rapidly mainly due to much simpler mixer 
mechanics, shorter fabrication run and easier chip handling, 
while the receiver noise can be as low as for waveguide 
mixers. The analysis of an ideal corrugated feed estimated 
total sidelobes of the ALMA system antenna at ≈ 20 dB [9] 
that is just few dB lower than the sidelobes of a practicable 
elliptical silicon lens-antenna SIS mixer [8]. It means that the 
final (system) difference between the horn-antenna 
(waveguide) and the lens-antenna SIS mixers can be a 
marginal issue.  

The output port capacitance of a SIS chip can be essential, 
so advanced electromagnetic design is needed for efficient 
coupling of the signal within intermediate frequency (IF) band 
of 4-12 GHz. A narrower IF band of 4-8 GHz is allowed in 
the case of single-side-band (SSB) operation. The tunerless 
method of the side-band separation is developed and tested for 
waveguides at millimeter wavelengths using two identical 
mixers and RF/IF 3-dB hybrid couplers [10]. However, this 
method seems difficult to implement, since not only very 
small mechanical tolerance is needed to balance the mixers, 
but also because of essential signal loss in a rectangular 
single-mode waveguide at terahertz frequencies. 

Another difficult point is the submillimeter local oscillator 
(LO) compatible with the ALMA cartridge concept. Recent 
solid-sate tunerless sources based on chain multipliers are 
hardly able to deliver the LO power higher than 10-20 µW 
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within the desired frequency range [11] that is not sufficient 
even for a state-of-the-art SIS mixer, if input beam-splitter is 
used. The LO powers of order of 200 µW are still a unique 
and narrow-band issue [12]. This is why the balanced SIS 
mixer approaches [13], [14] could be of great interest. 

In present paper we discuss the development of the SIS 
mixer and the front-end optics for ALMA Band-10. 
Conceptual designs for waveguide and quasioptical mixers are 
presented along with SIS chip performance estimates. 

 

II. APPROACHES AND DETAILS OF DESIGN 

A. SIS Junction Fabrication and Mixer Performance 
The ALMA ‘mass production’ has to account for assurance 

issues for SIS junctions and other components of the RF 
circuit. To easier achieve the specified (wide) RF frequency 
range, the Nb-based high current density submicron-size SIS 
junctions with AlN tunnel barrier [15] (A = 0.5 µm2 or 0.8 µm 
diameter, Jc= 15 - 20 kA/cm2) are being fabricated at NAOJ 
using SNAP technique (presented in Fig. 1) and the new 4-
target RF/DC deposition plant (from Ulvac) along with the 
projection g-Line Stepper machine (shown in Fig. 2). Since 
the previous experimental results [16]-[19], the 
NbTiN/SiO2/Al microstrip is accepted as the base-line for the 
tuning circuit. The electromagnetic simulation of the RF 
circuit demonstrated that the traditional AlxOy barrier SIS 
junctions (A = 0.8 µm2 or 1 µm diameter, Jc= 10 - 12 kA/cm2) 
can also suit the ALMA specifications. The calculations using 
Tucker’s theory (3-port model includes the quantum 
reactance) [2] predict the following parameters for a 20-Ohm 
SIS mixer: Gm= -7.5…- 9 dB (3-dB loss of the tuning circuit 
with RF sheet resistivity of 0.1 Ω/sq included), 
TRX < 200 K (DSB) (for realistic value TIF < 10 K) and 
PLO < 1 µW at 950 GHz (no optics loss included). The 
example of simulation data is presented in Fig. 3. 

 

 

Fig. 3.  Simulated IV-curves: un-pumped (a) and pumped (b). The simulated 
gain of SIS mixer at 950 GHz is presented by (c). 
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Fig. 1.  SIS junction fabrication flow-charts for SNAP technique. 

Fig. 2.  The g-Line Stepper machine (top) and developed sub-micron 
photoresist patterns within one-shot exposing area of 3.5 x 3.5 mm2 (bottom). 
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B. Waveguide Mixer 
The suggested tunerless full-height waveguide 

(280 µm × 140 µm) mixer will employ a single-side probe-
antenna [20] as shown in Fig. 4. The coplanar waveguide at 
the IF output facilitates the wide IF band: the RF chokes are 
grounded, so they do not contribute to the output capacitance. 
A chip-package concept (see Fig. 5) assumes a SIS junction 
staying within its particular waveguide mount (chip-package) 
for repeatable tests; there no need to dismount good chip for 
testing another one. The new chip can use its own package. 
Many mixers can be pre-certified at RF using the common 
parts of only one mixer block – the corrugated horn antenna 
and the fix-tuned backpiece. 

 

C. Quasioptical Mixers 
Since quasioptical chips are easier to process, and they can 

be handled with much less caution, the lens-antenna mixer can 
be used as a handy test platform for SIS junctions and tuning 
circuits (materials). It is worth to note that high-quality 
epitaxial films from NbN for terahertz-range applications [21] 
can be grown presumably on the high-dielectric MgO 
substrate (ε = 9.6), which are difficult to use with waveguides. 

We are going to use the quasi-optical mixing structure 
presented in Fig. 6 to facilitate the waveguide SIS mixer 

development. Simulations predict good performance of such 
mixer as shown in Fig. 7, which employs the twin-junction 
tuning circuit [22]-[24]. It is important to note that in spite of 
larger size of the chip (larger circuit), the IF range of 4-
12 GHz is simulated successfully for the quasioptical mixers 
as shown in Fig. 8. However, this smooth figure seems 
realistic only in the case of the integrated IF amplifier [25]. 

A quasioptical balanced mixing structure (QBM) from 
Fig. 9 can be accepted as the main option in the case of weak 
LO. The new scheme of QBM is using two crossed double-
slot antennas [13], which separate orthogonally polarized LO 
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Fig. 4.  Probe-antenna chip mounted in full-height waveguide (scheme). 
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Fig. 5.  Chip packaging concept for waveguide mixer. 
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Fig. 8.  Output port (IF signal) coupling to a 50-Ω load for the QO mixer from 
Fig. 6 (simulation).  
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Fig. 7.  Signal coupling (top curve) and reflection (bottom curve) for the QO 
mixer from Fig. 6 (simulation). The coupling level has to be corrected up for 
3 dB, since two equal SIS junctions are used. 

Fig. 6.  Layout of quasioptical SIS mixer based on a double-slot antenna. 
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and signal. The LO power is injected symmetrically to the 
signal slot-antennas via integrated RF interface providing anti-
phased IF signals at two twin-junction SIS mixers. We 
estimated essential reduction of LO power requirements down 
to only 2-3 µW for the whole two-polarized cartridge as 
presented in Table I.  

The implementation of the balanced mixer allows for 
essential simplification of the optical scheme of the cartridge 
as presented in Fig. 10. It is important that the launching beam 
angle can be defined via proper design of the elliptical lens, 
which is the only non-flat optical element between the SIS 
mixer chip and the sub-reflector of the telescope. 

 

 
 

TABLE I 
LO REQUIREMENTS FOR CARTRIDGE WITH BALANCED MIXERS 

LO 
frequency 

(GHz) 

RF Power 
before 3 dB 
loss (µW) 

Coupled 
RF power 

(µW) 

Mixer gain, 
Gm/after 3 dB 

loss (dB) 

Optimum LO 
voltage 

(αRF) (a.u.) 

DSB TRX

(K) 

780 1.9 0.8 -5 / -8 0.64 - 
865 2.3 1.12 -5.2 / -8.2 0.70 - 
950 2.8 1.28 -5.8 / -8.8 0.70 198 
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Fig. 9.  Conceptual scheme of balanced quasioptical SIS mixer employing the 
crossed double-slot antenna and two twin-junction detectors. Polarizations for 
signal and local oscillator are shown at the bottom. 

Fig. 10.  Optical scheme of double-polarized receiver cartridge employing two 
balanced SIS mixers (Mix-1 and Mix-2) from Fig. 9 (simplified). 
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