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Abstract— Variable capacitors in the fF to pF capacitance 

range are very interesting for high frequency applications like 
variable filters, couplers, resonators, etc. Our recent 
development permits to use meander-like suspensions for 
electrostatically actuated microbridges in Niobium (Nb) techno-
logy (see Fig. 1). The surface mounted fabrication procedure 
allows for integration of these devices with the standard Nb 
tunnel diode fabrication process as used for radio astronomical 
heterodyne detectors and superconducting electronic circuitry. 
We present the fabrication procedure, first meander suspended 
devices with a low actuation voltage range, and two filter designs 
for 22 GHz tunable band pass filters.  
 

Index Terms—variable capacitors, Nb, microbridge, MEMS 
(MicroElectroMechanical Systems), tunable filters 
 

I. INTRODUCTION 
The development of superconducting RF MEMS is motivated 
by the possibility of compact and reliable tuning elements 
with very low loss.  In recent work we developed a fabrication 
technology for surface mounted Niobium MEMS, which is 
compatible with the low temperature (<150°C) fabrication 
procedure of Nb-Al/AlOx-Nb SIS tunnel diodes, used in 
heterodyne high frequency mixers operated at 4 K. This 
permits the planar integration of the filters and detectors. In a 
simple geometry of a first design (see Fig. 1), the suspension 
of 700nm thick bridge layers was very rigid and required high 
actuation voltage. Thinner bridge layers (200nm to 300nm) 
revealed a strong differential stress. Due to the stress-induced 
deformation the bridge layers obtained a undesirable rigidity 
(saddle-like structure, see inset of Fig. 1). Nevertheless a 
considerable height variation at bias voltages of less than 50 V 
could be achieved. The working principle of microbridges 
with a thin bridge layer has already been demonstrated for test 
capacitors with areas close to 100µm×100µm and an air gap 
of 5 µm. The capacity (some tens of fF) of these devices could 
be varied by more than 10% by applying a voltage of 45V [1]. 
In this paper we describe the successful solution of the 
remaining stress problem which allows us to reduce the 
actuation voltage to ~10 V. 

 
Figure 1: Example of a simple Nb thin film bridge. The Nb film of 
the bridge is 700 nm thick. The inset shows the extreme bending of a 
bridge layer with only 240nm thickness and the reduced height due 
to stress in the Nb film. 

II. MEMS FABRICATION PROCEDURE 
Most superconducting circuits and mm-wave detectors are 
based on superconducting Nb [2, 3]. Compared with galvani-
cally grown bridge layers, sputtered Nb air bridges have the 
advantage, that the same techniques can be used as for the 
other parts of the superconducting circuitry.  
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Figure 2:  Fabrication process for sputtered Nb air bridges. 

 

 
Figure 3:  Profile of a sacrificial resist layer after flood exposure and 
development measured with a Dektak 8 profilometer. 
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After patterning of the attracting electrode using any suitable 
technique (e.g. lift-off or etching), a crucial step consists in 
the preparation of the sacrificial layer, which defines the 
bridge profile (Fig. 2a). Here, the photoresist AR-4000/8 
(ALLRESIST) is used, giving an initial resist thickness of 
5 µm. The pre-exposure bake is done for 30 minutes  at  85°C  
in  a  convection  oven.   To  obtain sufficiently smooth edges, 
the resist is baked 4 h at 94°C (flow bake) after development. 
Recent optimizations using proximity instead of contact expo-
sure improved the edge smoothness and the total process time 
and hence replaced the flow bake. With an additional flood 
exposure the resist height can be adapted to a desired value. A 
resist profile can be seen in Fig. 3. 

In the second step, the Nb layer is sputtered by DC-
magnetron sputtering in periods of 5–10 s deposition and 
5 min pause (Fig. 2b). Different step times have been chosen 
in order to examine a possible correlation with the film stress. 
The pauses are needed to reduce surface heating and thus 
deformation or polymerization of the resist layer.  

The bridge widths and form of the suspensions are 
defined in the third step with a photo resist etch mask. For a 
good coverage of the structures, we use again the thick resist. 
Through this resist mask, which covers the surface of the Nb 
bridges, the non-covered parts of the Nb layer are etched by 
ICP (Inductively Coupled Plasma) etching, as shown in Fig. 
2c [4]. 

In the final step, the resist is washed away in 70°C hot 
acetone (Fig. 2d). 

Applying this new technique, bridges with Nb layers of 
1.5 µm thickness were fabricated with lengths of 50–200 µm 
and widths of 50–1080 µm. A Nb film sputtered on top of the 
sacrificial resist layer prepared without flow bake shows a 
bending diameter of 1–2 mm. Taking a simple two-layer 
model one can estimate the compressive stress in the lower 
layer to be of the order of 100–200 MPa. This indicates that 
the film bending within the lengths of the bridges is much less 
pronounced than for 700 nm thick films with a bending 
diameter of 10–20 µm, corresponding to compressive stress of 
a few GPa. We tentatively explain this phenomenon with a 
strong stress gradient within the lower few hundred nm of the 
film thickness, whereas the upper part has almost no stress 
and serves therefore as stabilization. This effect can possibly 
be explained with the expansion and shrinking of the 
sacrificial resist layer during deposition and cooling, 
respectively, which might be more pronounced for the first 
hundreds of nm Nb thickness than for the last ones. 

III. MEANDER-SUSPENDED MICROBRIDGES 
Thin film structures from Niobium have great rigidity as can 
be seen from the Young’s modulus of 105 GPa. This fact and 
the possibility to etch thick Nb layers highly anisotropically 
by ICP etching with helium substrate cooling opened the 
opportunity to introduce meander-like spring suspensions for 
variable capacities (see Fig. 4). With this type of suspension 
the spring constant can be adjusted through the meander 
dimensions.  

 

 

nominal length  

nominal width  
 

Figure 4:  Schematic of a meander-suspended microbridge. 
 
The fabrication of differently sized test bridges with 

differently sized meander suspensions showed that bridges 
with lengths of up to 100 µm and widths of up to 600 µm 
could be fabricated yielding more than 80% (see Fig. 5), 
whereas the bridges longer than 200 µm were often sticking 
on the ground after the washing of the sacrificial resist layer. 
With the actual recipe the bridge height can be chosen 
between 2 µm and 7 µm, but tests indicate that bridge heights 
down to 1 µm might be achievable.  

 

 
Figure 5: Series of 50µm-bridges with different meander 
dimensions. The bridge height is 3 µm and the Nb film thickness is 
1.5 µm. In the inset a series of 100µm-bridges with widths from 
180 µm to 600 µm can be seen. 

 

 

2 µm 

Figure 6:  Series of 50µm-bridges with 2 µm wide meanders. 
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It has been demonstrated that even bridges with meander 
widths of 2 µm could be fabricated (see Fig. 6). Measurements 
of the capacitance were done with an Agilent LCR meter in a 
4-point configuration. The variation of differently sized test 
bridges gave very promising results, as can be seen on Fig. 7. 
Only the 100x100 µm2 bridges with meanders larger than 4 
µm and shorter than 25 µm had their pull-in point above 40 V. 
From the capacitance value of the 150µm-bridge one can de-
duce an effective unbiased bridge height after release of 1 µm 
instead of 3 µm given by the thickness of the sacrificial resist 
layer. We explain this reduced height with the bending of the 
Nb bridge layer.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7:  Capacitance of different meander-suspended microbridges 
as a function of the actuation voltage. The continuous line belongs to 
the right scale and the voltage scale shows the real voltages applied 
to this device. Points belong to various devices and capacity (left 
scale) has been normalized in order to show the similarity in 
actuation behavior.  

IV. BAND PASS FILTERS 
The two filter chips, shown in Fig. 8, have been realized on 
quartz substrates with dimensions of 0.2×1.0×7.7 mm3. Each 
of them has been synthesized starting from a lumped element 
model consisting of series inductors and parallel capacitors, 
which have been successively transformed in short sections 
(l<<λ) of, respectively coplanar waveguides (CPW) and 
microbridge lines. The electrodes underneath the bridges have 
almost the same size as the bridges. Both filters are optimized 
to provide maximum tuning frequency range when the air 
gaps of the microbridges are decreased from their nominal 
(unbiased) value of 2.5 µm down to the minimum of ∼1.7 µm, 
expected when the maximum bias voltage is applied.  

The filters were optimized using the commercial software 
ADS [5]. The microbridge structures and the effects of dis-
continuities between these sections and the CPW sections 
were modeled with Sonnet [6] and were successively included 
in ADS for global optimization of the filters. The supercon-
ducting effects, that slightly modify the transmission line 
properties due to the field penetration depth inside the 150 nm 
thick Nb layers, were taken into account in the electro-
magnetic simulations. The input and output sections of both 
filters are 50 Ω CPW with 260 µm wide central conductor  
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Figure 8: View of bandpass tunable filter chips: a) of order 5, b) of 
order 6. 
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and 23 µm gap to adjacent ground electrodes. The micro-
bridges of each filter have all the same length (200 µm in the 
filter of order 5, 100 µm in the filter of order 6). The 
maximum width of the microbridges is 224 µm, and the 
narrowest central strip of the CPW sections is 5 µm. Because 
of the shorter microbridge length, the filter of order 6 can be 
realized with a higher yield than the other one, which has, 
nevertheless, the advantage that it can be tuned over a wider 
frequency range.     

The results of the simulations for the transmitted ampli-
tudes of the two filters under biased and unbiased conditions 
are shown in the Figs. 9 and 10. The central frequency of the 
filter can be tuned continuously within the respective range. 
The 3-dB fractional bandwidth of the filter is about 3% and 
varies only slightly with the voltage applied to the micro-
bridges (between 670 MHz and 760 MHz). The estimated 
insertion losses are very low (< 0.3 dB), and vary little with 
bridge height. The off resonance isolation is below -17 dB. 

First filter devices have been fabricated (Fig. 11) and are 
about to be measured. 
 

16th International Symposium on Space Terahertz Technology

183



 

14 16 18 20 22 24 26 28 30
-40

-35

-30

-25

-20

-15

-10

-5

0
760 MHz670 MHz

23.50 GHz

20.35 GHz

bridge height
   2.5 µm

bridge height
   1.7 µm

Filter Order 5
Tuning Range: 20.35-23.50 GHz
3 dB Bandwidth: 670-760 MHz
Insertion Loss: 0.3 dB max

 

Tr
an

sm
itt

ed
 A

m
pl

itu
de

  [
dB

]

Frequency [GHz]   
Figure 9: Transmitted amplitude of the filters of order 5 for two 
different air bridge heights: 2.5 µm (no voltage applied), and 1.7 µm 
(maximum voltage). 
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Figure 10: Transmitted amplitude of the filters of order 6 for two 
different air bridge heights: 2.5 µm (no voltage applied), and 1.7 µm 
(maximum voltage). 

 

Figure 11:  A 22 GHz band 
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Figure 12: Schematic of a microbridge with additional 
dielectric layer. 
 
capacitance of two conductors separated by a gap of air h1, 
and C2is the capacitance of two conductors separated by a h2 
thick dielectric. The maximum relative variation of the 
capacitance is given by: ∆C/ Coff =(C2-Coff)/Coff =εr h2/h1. For 
example, if we use air only (with no dielectric) like in our 
22 GHz filter design, with εr=1, h1=0.8 µm, h2=1.7 µm, we 
get: ∆C/ Coff=47%. If we add a dielectric layer of AlN (εr 
=4.6, [7]) with h2=1.7 um, and air h1=0.8 um, we obtain 
∆C/Coff=216%. 

Therefore, future improvements will include separation of 
actuation electrodes from tuned capacities. Topological 
variations of either top or ground electrodes can lead to much 
wider tuning ranges. Finally, dielectric layers will further 
improve tuning ranges and at the same time resolve problems 
of electrical isolation and sticking. 
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