
 

Abstract—We present the performances of two sensitive
submillimeter receivers operating in distinct bandwidth ranges:
330-540 GHz and 430-660 GHz, by using a unique robust,
assembly-friendly, space-qualified fix-tuned mixer block. Only
the corrugated horns and SIS devices have been swapped. The
Fourier Transform Spectrometry measurements show 50%
frequency bandwidth and the uncorrected measured DSB noise
temperatures were less than 7 times the quantum limit in both
cases.

Index Terms—Fix-tuned mixer block, twin SIS junction, broad
bandwidths.

I. INTRODUCTION

ow noise fix-tuned broad band heterodyne receivers are
needed for many projects presently in progress: HIFI

heterodyne instrument for space-based telescope Hershel and
ground-based interferometer ALMA composed of 64 12-m
antennas. Within the framework of HIFI channel 1, i.e 480-
640 GHz frequency range, Salez et al [1] have developed a
high-performance SIS mixer producing state-of-the-art results;
i.e they obtained noise performances better than 3 times the
quantum limit over the whole 30% bandwidth. They have used
a space-qualified fix-tuned mixer block, in which was mounted
an SIS chip fabricated at IRAM [2]. In this paper, we present
similar high-performance measurement results at 330-540
GHz, i.e a bandwidth including ALMA band 8, using same
robust block. Indeed, HIFI band 1 block has a peculiarity that
only the feedhorn section is frequency-band dependant,
housing the horn itself, the waveguide transition, the
waveguide and the substrate channel, forming a single part
(see below). Switching from HIFI band 1 to ALMA band 8
simply meant swapping the corrugated horn and the SIS chip
and keeping the rest of the mixer unit identical. In order to
compare the performances, we also present FTS and
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heterodyne measurements obtained with mixer using SIS
circuit designed according to Paris observatory fabrication
process and operating in HIFI channel 1 band.

II. RECEIVERS

A. Mixer Block
As seen in Fig. 1, our mixer block is divided into two

functional components: (a) component including DC supply
circuit, the 4-8 GHz IF circuit and the coils, (b) horn
component in which is placed the mixer device. It is made up
of copper corrugated horn, the waveguide transition, the
waveguide and the substrate channel thus forming a single
part. The local oscillator (LO) and RF signals are conveyed to
the mixer chip via a half-height rectangular waveguide. The
mixer device is fabricated on a fused quartz substrate, placed
into a channel perpendicular to the waveguide as shown in
figure 1-c. The table 1 summarizes the principal horn
component dimensions and substrate thickness according to
the bands.

TABLE 1 HERE

The waveguide/substrate transition allowing quasi-TEM-
mode in microstrip line is realized by a bow-tie antenna whose
impedance is real ∼  50 + j0 Ω over the two frequency bands,
thanks to the optimisations using CST-Microwave Studio [3].
Made of the simple plain flat metal part, the backshort, which
is into component (a), closes both the substrate channel and
the waveguide-end and comes to contact the block (b) between
the air-gap of a cryoperm core (see fig. 1-c). In both cases, the
microstrip faces the backshort.

FiG. 1 HERE

Consequently, the block manufacturing and assembly are
deeply simplified. The undesirable Josephson currents are
suppressed by a magnetic field, which is generated by NbTi
superconductive wire coiled around a cryoperm core made of a
single piece and folded into the proper shape. The IF coupling
is provided by an optimized microstrip-to-coaxial 90°
transition using a spring bellow, allowing a simple and fast
mixer block mounting procedure and avoiding the risks of
electrical contact disruption during cool-downs. The principles
of this compact (32x32x40 mm3) and light (67 g) mixer block
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design have been well described in [4]. It is machined by SAP:
Sociète Audoise de Précision [5]. As we mentioned above, the
mixer block, initially developed for HIFI space instrument,
was space qualified by submitting to vibration tests,
electromagnetic compatibility (EMC) tests, and thermal
cycling tests between 360 K and 4.2 K. It successfully passed
all these tests.

B. Detectors and fabrication
The mixer devices are based on double Nb/AlOx/Nb junction

tuning circuit [6-7]. We chose an average current density of 10
kA/cm². The devices were initially optimised to operate in
ALMA Channel 8 band: 380-500 GHz and HIFI Channel 1
band: 480-640 using same techniques employed for HIFI
channel 1 developments [8-10]. The junction areas are
respectively 1.3x1.3 µm² with Rn ≈ 10 Ω and 1.4x1.4 µm² with
Rn ≈ 6 Ω. The intrinsic capacitance measured is CJ=81 fF/µm².
The voltage gap is ∼  2.82 mV. Their quality defined as the
ratio of the subgap current at 2 mV to the normal resistance
ratio (RSG/Rn) is ~ 15 average.

FiG. 2 HERE

All SIS devices were fabricated at Paris observatory facility
using standard SNEP (Selective Niobium Etching Process)
technique [11] based on standard optical lithography process.
The 0.2 µm niobium base electrode, the 0.01 µm aluminium,
and 0.1 µm upper niobium films are DC sputtered. The tunnel
barrier is built by thermal oxidation of the aluminium layer,
using pure O2 before upper niobium deposition. The bow-tie
antenna and RF filters were defined by photolithography
technique. A 0.25 µm SiO layer was evaporated to isolate the
junction’s area and to make a dielectric for RF tuning circuits.
The photolithography follow-up the lift-off of 0.35 µm
counter-electrode niobium allows to connect the junctions and
to define the upper electrode of the RF tuning circuits. It was
DC sputtered. Finally, a 0.2 µm gold film was evaporated in
order to obtain the electrical contact.

III. RESULTS

The SIS mixer is cooled down to 4.2 K in a cryostat. The IF
signal is amplified by a 4-8 GHz cryogenic HEMT
preamplifier. A current of less than 10-mA was sufficient to
produce a flux of two quanta (2Φ0), allowing the quasi-total
suppression of Josephson effect. The IF matching is provided
by a 50-Ω microstrip line on an alumina board, contacting a
coaxial SMA plug at 90°. The local oscillator signals were
provided by two solid-state  sources which cover the 385 to
500 GHz range. On their quasioptical path, RF and LO signals
encounter a 13-µm mylar beam splitter, a 25-µm mylar
cryostat window, a 250-µm Zitex infrared filter and two cold
elliptical mirrors before arriving at the mixer feedhorn.

A. Fourier Transform Spectroscopy
Direct detection responses, obtained by FTS measurements,

reveal a 50 % relative bandwidth in both cases as shown in
Fig. 3. The measurements were made without vacuum
environment. We note the water transitions at 385 GHz and
557 GHz, as two clear absorption features.

B. Heterodyne measurements
Fig. 4-c and 4-d show the uncorrected DSB receiver noise

temperatures measured over a 385-500 GHz and 490-700 GHz
frequency range. Below 385 GHz, the measurements were not
possible due to lack of LO source operating at these
frequencies. DSB receiver noise temperature is measured by
standard Y-factor method: Y=Phot/Pcold where Phot and Pcold
are respectively the measured IF output power using hot (298
K) and cold (170K) blackbody sources as the input signal. The
IF output power versus DC bias voltage for both load
temperatures are shown in Fig. 5.

FiG. 3 HERE

FiG. 4 HERE

For the lower band, the noise temperatures are relatively
homogeneous over the whole bandwidth.The lowest noise
temperature is 95 K measured at 474 GHz and the highest is
142 K at 385 GHz. For the higher band, the DSB noise
temperatures were below 160 GHz expect at 641 GHz where
we measured 190 K. This increase is due to the very low
output power of our LO chain at this frequency. The
quasioptical contribution was estimated around 40 K using the
intersecting lines technique [12]. The IF noise is about 15 K,
as deduced using the shot noise in the twin SIS junctions as a
calibrator. In this case, the corrected noise temperatures; i.e
subtracting the quasioptical loss contribution, are equivalent to
about 3 times the quantum limit.

FiG. 5 HERE

IV. CONCLUSION

We have measured two fix-tuned mixers designed to operate
in two different band frequencies: 385-500 GHz and 480-640
GHz, using the same mixer unit. It was possible thanks to
judicious concept of the mixer block where only the
corrugated horn is swapped. The FTS measurements showed a
relative bandwidth of 50% in both cases. The uncorrected
DSB noise temperatures are between 95 and 142 K for lower
band and between 97 -190 K for the higher band at 4.2 K. In
addition, we expected similar performances for any wide band
from 200-800 GHz using the same Nb process, by simply
manufacturing band-specific front sections consisting each of
the adequate corrugated feedhorn, waveguide and SIS device.
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Fig. 1.  Views of our mixer block: (a) component including DC supply
circuit, the 4-8 GHz IF circuit and the coils, (b) horn component made up
of corrugated horn, the waveguide transition, the waveguide and the
substrate channel . View (c) shows mixer chip placed into substrate channel
perpendicular to the waveguide and the magnet.
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Fig. 2. Optical microscope image of twin parallel. The Nb/AlOx/Nb
SIS junctions are 1.3x1.3 µm².

TABLE I
PRINCIPAL HORN COMPONENT DIMENSIONS

Substrate thickness (µm)
Channel width (µm)
Rectangular Waveguide (µm)
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Band 8

HIFI
Band 1

60 50
160 130

500x125 400x100
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Fig. 5. IF output powers, unpumped and pumped I-V curves versus
voltage bias for ALMA device at 385 GHz using hot (298K) and cold
(170K) loads.
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Fig. 3. Direct detection response of two mixers using same mechanical
block by swapping only the horns. The measurements were made
without vacuum at 4.2 K.   
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