
 

  
Abstract— We present results on the design and 

construction of a waveguide balanced Hot Electron Bolometer 
(HEB) Terahertz mixer for Atacama Pathfinder EXperiment 
(APEX), band T2 covering 1250-1390 GHz frequency range. In 
the proposed design, a waveguide balanced mixer is realized using 
a quadrature scheme. The two identical HEB elements are 
integrated with RF choke filters, DC-bias, IF circuitry, and 
fabricated from 4  nm thick NbN film deposited on a crystalline 
quartz substrate with dimensions of 1100 µm×70 µm×17 µm. We 
have designed and fabricated an input 3 dB quadrature 
waveguide hybrid. For its fabrication, we use micromachining 
approach to achieve low insertion loss and symmetrical division of 
the RF and local oscillator (LO) power within the band of interest. 
We plan to use two HEB mixer configurations with different 
probe impedance values of 55, 70 Ohm within 1250-1390 GHz 
frequency range. 

 
Index Terms—balanced mixer, terahertz radio astronomy, 

hot-electron bolometer mixer. 
 

I. INTRODUCTION 
HE APEX 12 single dish telescope located at Chajnantor 
Plato, in Northern Chile will be equipped with heterodyne 

and bolometric receivers for radio astronomical observations at 
the frequency range 211 – 1500 GHz [1]. According to recent 
atmospheric measurements, the three windows centered at 
1.03, 1.35 and 1.5 THz show transmission as high as 40% 
under favorable conditions on this site [2]. Currently, there is 
only one ground-based submillimeter telescope successfully 
operating at frequencies above 1 THz [3].  

In this paper, we present progress of our development of the 
waveguide balanced HEB mixer intended for APEX band T2 
covering 1250 - 1390 GHz frequency range with a central 
frequency of 1320 GHz. 

The balanced scheme of HEB mixer has a number of benefits 
over a single-ended mixer. Among them, for instance, are good 
rejection of LO amplitude modulation noise and better LO 
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power handling capabilities [4]. On the other hand, the high 
operating frequencies, above 1 THz, introduce significant 
difficulties for manufacturing waveguide components, and 
make balanced design less attractive. 

The prototype’s design of waveguide balanced HEB mixer 
for APEX 1.3 THz receiver proposed in [9] is revised 
significantly. In the current paper, we present important 
improvement in mixer components design and fabrication. 
Figure 1 shows the quadrature scheme of our balanced HEB 
mixer. The 3 dB quadrature waveguide hybrid couples the RF 
signal and LO to the individual identical HEB mixers. The 
outputs from the HEB mixers at intermediate frequency (IF) are 
connected to cryogenic IF low noise amplifiers (LNA). These 
LNAs 2-4 GHz designed at GARD use 50 Ω-matched inputs in 
order to improve system noise temperature by avoiding 
circulators [5]. A commercial 180° IF hybrid combines IF 
outputs from the both mixers. The resulting IF signal is 
collected at one of the IF hybrid outputs, and the amplitude 
component of the sideband LO noise is terminated at the other 
output. Placing the LNAs before the IF hybrid should improve 
the system noise performance by the reduction of the additional 
noise caused by the IF hybrid insertion loss. In 
contradistinction to the previous mixer design [9], we do not 
use an additional cryogenic LNA following the IF hybrid. 
Moreover, the isolation of the balanced mixer depends on the 
amplitude and phase imbalance of the two IF amplifiers. 

II. WAVEGUIDE 90° HYBRID 
The input waveguide 3dB hybrid providing LO injection and 

RF signal distribution between two HEB mixers with 90° phase 
shift, is designed compatible with the split-block technique. 
The splitting takes place through the plane of symmetry in the 
middle of the waveguide’s broad walls. Therefore, possible 
imperfect contact between two halves will not affect the 
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Fig.1.  Scheme of the balanced HEB mixer 
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Fig.2.  The waveguide hybrid with six branches. The main waveguide size is 
180 µm (dimension a) by 90 µm (dimension b). Values of K, Ln, Hn were 
varied to achieve the optimal configuration of the coupler at K=50 µm, 
H1=21 µm, H2=35 µm, H3=25 µm, L1=44 µm, L2=41 µm, L3=45 µm. 

     a).             b). 
 
 
 
\\\ 

Fig.4a, b.  SEM pictures of the hybrid's halves fabricated from copper, and 
split through the plane of symmetry at the middle of the main waveguides 
broad walls. 

hybrid’s performances. 
In order to ensure fractional bandwidth of about 20%, we 

intend to use a six-section hybrid. Drawing of the proposed 
hybrid design is shown in Fig.2. The increased number of 
branches makes the fabrication difficult because the required 
dimensions become too small to be produced with sufficient 
accuracy using conventional machining techniques.  

The design variables are the heights of the branches (Hn), the 
spacing between branches (Ln), and the distance between the 
main waveguides (K). The main waveguide dimensions 
a=180 µm and b=90 µm are fixed. Thus, for each half of the 
split-block the waveguide depth channel has to be 90 µm. The 
limit of branch guide height Hn is chosen to be as low as 20 µm. 

To analyze the hybrid performance, the hybrid was 
represented as a series of E-plane T-junctions interconnected 
by waveguides. On the initial stage of the design, we applied a 
numerical matrix method based on circuit theory [6], [7]. Then 
final optimization of the hybrid performance was carried out by 
using HFSS[8]. The optimal configuration of the hybrid is 
achieved with the following values of the design variables: 
K=50 µm, H1=21 µm, H2=35 µm, H3=25 µm, L1=44 µm, 
L2=41 µm, L3=45 µm. In Figure 3, the lines show S21, S31, S11, 

and S41 values obtained from HFSS simulations. As we 
mentioned above, the amplitude and phase symmetry at the two 
ports of the hybrid is crucial for good isolation between the 
mixers. For the optimal design parameters, amplitude 
imbalance, S31 – S21, and phase difference, φ31-φ21, at the 
outputs of the hybrid are better then 0.5 dB and 0.5°, 
correspondingly, within the 1250-1390 GHz band. 

In our previous paper [9], we found that the amplitude 
imbalance between port 2 and 3 of the hybrid over the required 
band became not acceptable if all structure dimensions has 
been produced with a linear error as small as 2 µm. Therefore, 
the required dimension tolerances along with high quality of 
the waveguide walls surface (better than 0.1 µm at 1.3 THz) 
prompts to use a micromachining method for fabrication the 
hybrid. In order to achieve the required machining precision, 
we use photolithography of thick SU-8 [ 10 ] photoresist 
combined with the copper electroplating. This fabrication 
method was discussed in a greater detail in [11], and has shown 
good dimension reproducibility with accuracy of better than 
2 µm. The hybrid made using this technology is shown in Fig. 
4a, b. 

III. HEB MIXER DESIGN 
The key and extremely important part of our heterodyne 

receiver is a pair of phonon-cooled HEB waveguide mixers 
based on NbN film deposited on 150 µm thick crystalline 
quartz substrate. For these films, the typical critical temperature 
is about 9.5 K with transition widths of 0.6-0.7 K. The film is 
patterned using e-beam lithography to form the bolometer 
elements of 0.1-0.2 µm long and 1-2 µm wide. With those 
dimensions, the measured mixer’s room-temperature resistance 
is within a range of 100-130 Ω. The normal-state resistance, 
RN, is about 15% higher than the room-temperature value. 
Critical current value is close to 140 µA at 4.2 K bath 
temperature. 

For a balanced mixer, each HEB should have very similar 
DC and noise characteristics to guaranty better balance and the 
LO noise rejection. The HEB element is integrated with the 
“hammer” type RF filters, DC-bias circuitry, and IF leads on an 
individual crystalline quartz substrate with dimensions of 
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Fig.3.  Results of HFSS simulations of the hybrid S-parameters at the optimal 
design variables. 
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Fig.5.  The layout of the individual HEB mixers integrated with RF filters, 
DC-bias, and IF circuitry on an individual crystalline quartz substrate with 
dimensions of 1000 µm x70 µm x17 µm 
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Fig.7.  Smith chart normalized to 50 Ohm with RF probe impedance values at 
the HEB junction input for two probe designs: type A (gray curve) and type B 
(black curve). The frequency range is from 1220 to 1420 GHz. 

1000 µm x70 µm x17 µm. Both substrates will fit into a 
suspended microstrip channel across the broad wall of full 
height 180 µm x 90 µm waveguide inside a copper mixer block 
with fixed 70 µm backshort. The individual HEB mixer layout 
is shown in Fig.5. In the probe design, the input RF signal 
coming from waveguide port is coupled to the HEB junction by 
E-type probe, and appeared to be isolated from DC bias/IF 
output port using RF choke [12]. Good match over wide 
frequency band with no needs to reduce the waveguide height 
makes the “one side” probe’s configuration attractive 
especially for THz frequencies. The 17 µm thickness of quartz 
substrate is chosen to prevent propagation of waveguide mode 
to the IF port.  

We have two designs of the RF probe providing different 
embedding impedance to the HEB elements of about 55 Ohm 
(type A), 70 Ohm (type B) within the receiver frequency band, 
as shown on the Smith chart in Fig. 6. The HFSS simulation 
results show that RF probe impedance is purely real in 

frequency range from 1248 to 1392 GHz for the both proposed 
designs. 

The mixer block is under machining at our workshop, and 
we expect that the first measurements results of the 1.3 THz 
mixers will be reported soon. 

IV. CONCLUSION 
We have achieved a final stage of the development of a 

waveguide balanced HEB 1.3 THz receiver for APEX Band 
T2. We have successfully designed and fabricated 1.32 THz 
waveguide 3 dB 90°-hybrid. According to the detailed HFSS 
simulations, the required values of the amplitude and phase 
imbalance at the coupler's outputs have been achieved.  

We have designed two types of RF probe with different 
embedding impedance to the HEB elements of about 55 and 70 
Ohm in 1250-1390 GHz frequency range. The first batch of 
NbN HEB mixers with the two types of RF probe has been 
fabricated and prepared for further measurements. 
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