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Abstract— Superconducting NbN hot electron bolometer mix-
ers have become the only sensitive heterodyne detectors operating
at frequencies far above 1 THz. Since their application will be
mainly in space, the reliability of such mixers becomes a key
issue. In this paper we report measurements of the resistance
and the superconducting critical current as a function of time
under normal laboratory conditions for a period of one year as
well as the resistance versus time under a harsh condition (85oC/
85 % relative humidity). The devices studied are small volume
twin slot antenna coupled NbN HEB mixers. By defining the
lifetime during which the room temperature resistance increases
by 15 %, we find that the lifetime of standard devices is only
half a year in normal atmosphere, which is insufficient for space
applications. However, by introducing an additional passivation
on the standard devices, the lifetime becomes longer than one
year. The advantage of applying the passivation layer is further
confirmed by the 85/85 accelerated tests.

Index Terms— Superconducting, NbN, HEB mixers, Lifetime,
Space Qualification, Passivation layer,SiO2.

I. I NTRODUCTION

NBN HEB detectors currently demonstrate the best char-
acteristics for heterodyne astronomical observations at

frequencies above 1.5 THz [1], [2]. Since the earth’s at-
mosphere is largely opaque in this range the mixers will
primarily be used from space (e.g. HIFI on HERSCHEL space
telescope [3]) or from high elevations. Obviously, reliable
detector operation of the NbN based HEBs is crucial to the
success of such missions. However, in contrast to standard
semiconductor devices, very few is known about the lifetime
of mixer structures based on extremely thin (NbN) supercon-
ducting films.

According to the American Society for Testing and Mate-
rials (ASTM), the service lifetime of materials, devices, or
systems is the exposure time at which degradation occurs
below a prescribed or required value, i.e. a total failure or a
failure to perform at a preassigned value. Still, no such criteria
have been established for NbN HEB mixers yet. It is clear that
deterioration of superconducting properties eventually imposes
questionable device operation and even failure. The increase
in room temperature resistance(R300K) is found as a good
indicator for this deterioration. We choose a 15% increase in
R300K as prescribed limit.

The (required) lifetime is in general coupled to the pre-
cise conditions under which the device is kept or treated.
Two conditions are of special interest: Firstly under normal
atmosphere at room temperature and secondly under vacuum
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at 85oC. For space applications, the mixers should be able to
survive many integration, transport and storage steps. The total
duration of exposure to normal atmosphere can be between one
to five years [4]. The resistance to more extreme conditions,
i.e. baking at 85oC for at least 72 hours [4] under vacuum
is required as a standard method to assure vacuum hardness
of the system. We note that several other conditions (e.g.
thermal cycling) remain undiscussed here since they proved
to be unproblematic.

II. D EVICES

The HEB devices under consideration are based on sputtered
NbN thin films on a pure Si substrate with an intended thick-
ness of 3.5nm prepared at MSPU, Moscow. The unprocessed
NbN has a critical temperature (Tc) between 8.6 - 9.3K
depending on the film and precise location on the wafer, a
sheet resistance (Rsheet,300K) of 600 Ω at 300 K, and a
resistance ratio RRR(Rsheet,300K /Rsheet,16K) of 0.8. After
processing the bulk film degrades marginally: TheRsheet,300K

of the film, of a large structure is slightly higher; 650Ω, the
Tc is reduced< 0.5 K, and a critical current (Ic) of 900 µA
for an 8µm wide structure is measured.

Below we discuss the fabrication process of the devices as
lifetime may depend on its details.

The NbN films are contacted to the antenna structure
by the contact pads. The contact pads are defined by E-
beam lithography using a double layer PMMA resist system,
which requires in total 10 minutes baking at 120oC. After
development, an Oxygen plasma clean is performed, just long
enough to remove resist remnants. Next, a short physicalAr+

etch is performed followed by in situ deposition of 10nm of
NbTiN and 40nm Au. We note that the exact contacting
procedure is crucial [6], [7] to device performance. See Fig. 2

Fig. 1. SEM picture showing a Topview of the HEB bridge structure.
The HEB consists of the NbN bridge in the middle contacted by two large
contactpads on either side. The HEB bridge is protected by negative resist on
top.
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for a cross-section of the contactpads. To define the twinslot
antenna, a single layer Negative resist is spun, requiring 3
minutes baking at 90oC and after E-beam exposure a 3
minutes 110oC postbake. After development with MF322 for
9 minutes and Oxygen plasma clean we evaporate 5nm Ti
for adhesion and 150nm Au to constitute the antenna. Liftoff
is done in PRS3000 at 90oC for two minutes in combination
with ultrasonic agitation, followed by 5 minutes ultrasonic
agitation in Acetone. Finally, the bridge is defined by E-beam
lithography using a 500nm thick SAL601 negative resist etch
mask. After 7 minutes development in MF322 we perform an
Oxygen plasma clean to remove resist remnants. The final etch
is performed by RIE usingCF4 + O2, with a 20% overetch.
After RIE etching, a short Oxygen etch is performed to oxidize
any remaining material on the surface. After the final etch, the
remaining SAL601 etch mask is about 300nm thick and is
left on the device. The completed bridge measures 150 nm
in length and 1.0um to 2.0 um in width, see Fig. 1. This
concludes fabrication for ”standard” devices.

To reduce the aging effect, to be discussed shortly, we
introduce a passivation layer on top of the active region of
the HEB. This layer consists of 500nm thick SiOx (1.5 <
x < 2.0). The Deviceswith passivation layer experience
only one additional fabrication step which consists ofSiOx

sputter deposition using aSiO2 target. Note that the sample is
pumped down 24 hours before deposition. An elevated mask
is used to cover only a 200µm x 200µm region around the
bridge with SiOx. The SAL601 resist remains on the bridge
in order to avoid chemical reactions betweenSiOx and NbN.
Care is taken to avoid heating of the substrate during theSiOx

deposition.

Shortly after fabrication, such devices (1µm wide) have
a Rsheet,300K around 800 to 900Ω and (Ic) around 70µA.
These values are found for both deviceswith andwithout pas-
sivation layer. Note that this is higher and lower respectively
than values for a big film after processing. The reason for this
is not clear to us. Note however that devices are typical and
are taken from several batches with mixer performance> 10
% from the best.

 Antenna 

Contact pads 

NbN 

film 

10 nm  
 NbTiN 

40 nm Au 

Bolometer 

 

Substrate 

Fig. 2. Cross-sectional drawing of the HEB structure as shown from the
top in Fig. 1. The cross-section reveals the composition of the contactpads,
consisting of the NbN with 10 nm NbTiN on top followed in situ by 40 nm
Au. Note that the resist protecting the NbN bridge is not shown.

III. L IFETIME IN LABORATORY CONDITIONS

Lifetime measurements of NbN HEBs are performed in
standard laboratory conditions, 20oC and 65% relative
humidity (RH). TheR300K as well as the superconducting
properties are measured at certain intervals in time. Fig. 3
shows the typical resistance versus temperature (RT) and Fig.
4 the current versus voltage (IV) measurements for a device
without passivation layer. It becomes clear from Fig. 5 how
the resistance increases whileTc and Ic decrease for longer
exposure. To show this trend for more devices, theR300K and
Ic of several deviceswithoutpassivation layer versus exposure
time is shown in Fig. 5. Note that the readily measuredR300K

reliably indicates the degradation of superconducting prop-
erties. Specifically, the standard devices (without passivation
layer) show an increase in resistance of about 0.1-0.3Ω per
day. Over a period of one year theR300K is expected to
increase about 7-30% (10-50 Ω). The average lifetime of
the deviceswithout passivation layer is thus about half a year,
well below the required one year. The 15% increase inR300K

matches with a substantial 30% average reduction inIc.
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Fig. 3. Resistance versus Voltage plot of device J10 of batch M6T measured
at several intervals, indicated in days after fabrication.
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Fig. 4. Current versus Voltage plots of device J10 of batch M6T measured
at several intervals, indicated in days after fabrication.
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Fig. 5. Normal state resistance at 300K (top panels) and critical current at 4.2K (lower panels) versus exposure time in atmosphere at 300K
and 65% RH. Left panels are for deviceswithout passivation layer, right panels for deviceswith SiOx passivation layer.

By storing devices in vacuum, we found that the aging
effect is reduced considerably. This indicates thatO2 and
H2O in normal atmosphere are likely ingredients of the
aging. However, during integration of HEB mixers into the
instrument, applying vacuum is impractical. This motivates
the introduction of a capping layer to reduce the aging effects,
similar to the SiO passivation layer proposed by Kawamura et
al. for Nb HEBs [8]. Fig. 5 shows the dramatic improvement
in lifetime by using SiOx passivation layer, in which the
resistance increases less than 10% during approximately one
year storage in the laboratory. This is also reflected by no more
than 10-15% decrease ofIc for the same storage time.

IV. A CCELERATED LIFETIME TESTS.

A standard method to determine the lifetime of semiconduc-
tor devices is the ”accelerated test” at 85oC and 85% relative
humidity (RH). Then, applying a well established model to
predict the lifetime under normal conditions. This method can
not apply to NbN HEB mixers since such model is lacking. We
merely make use of the accelerated lifetime test to compare
the deviceswith andwithout passivation layer. We performed
accelerated lifetime tests at 85% RH and 85oC. TheR300K

as function of exposure time is shown in Fig. 7. TheR300K

in Fig. 7 increases exponential-like over time for both devices
with as well aswithout passivation layer. The 15% increase
in R300K of deviceswithout passivation layer is reached on
average after 29 hours and only after an average of 60 hours

Fig. 7. Accelerated aging test by monitoring the device resistance under a
harsh 85oC - 85 % relative humidity environment as a function of time. The
R300k of the devices is close to 150Ω, except for device J8 which has a
R300k of 100 Ω.
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Fig. 6. Normal state resistance at 300K (top panels) and critical current at 4.2K (Lower panels) versus baking time in days at 85oC and6 · 10−5 mB.
Left panels are for deviceswithout passivation layer, right panels for deviceswith SiOx passivation layer.

for deviceswith passivation layer. This confirms the advantage
of using theSiOx passivation layer.

V. L IFETIME UNDER BAKE-OUT CONDITIONS.

Devices were baked at 85oC under vacuum conditions
(6·10−5 mB) using a rotary pump. The baking was interupted
for characterisation ofR300K and Ic. Fig. 6 showsR300K

and Ic as a function of baking time. For deviceswithout
passivation layer,R300K increases between 5% and 20%
for a duration of 9 days. Critical current decreases from 10%
to 60 % after 9 days baking. Although some deviceswithout
passivation layer hardly change, the limit of 15% R300K

increase is exceeded for others. Moreover, the atmospheric
pressure during bake-out may be much higher than used in
this baking test. Consequently the deterioration of the device
performance of deviceswithout passivation layer may be
even more severe. Again, deviceswith passivation layer show
reduced deterioration as can be seen in Fig. 6.R300K increases
less than 10% andIc decreases less than 20% for 9 days of
baking at 85oC. It is interesting to note that a device with
low critical current density (Jc) with passivation layer shows
almost unchangedIc after a maximum of 6 days baking. We
note that pumping down the oven 24 hours before starting the
heater is advantageous in reducing device degradation. Baking
has been performed to a maximum of 9 days.

As part of the baking tests we also measure the influence
on RF performance. Fig. 8 shows the mixer noise temperature
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Fig. 8. Relative changes of the noise temperature with baking time in days
for deviceswith andwithout passivation layer. P1 indicates the procedure that
the heating was switched on 24 hours after the pumpdown was started. P2
indicates that the heater was started several hours after the pumpdown was
started. In both cases the pressure during baking was about6 · 10−5 mB
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(Tn) for different durations of baking. Also here we compare
between deviceswith and without passivation layer. We find
that Tn can either decrease or remain unchanged after short
baking times of 2-3 days. When baking is resumed, after a
total of 6 days of baking theTn will increase again. Devices
with passivation layer generally show largest decrease ofTn

after 3 days while after 6 days the increase inTn is small
compared to before baking. The exact reason for this is not
clear. However, DC characterization suggests an improvement
of the contacts by short baking (e.g. 3 days) in competition
with film degradation for longer baking times [9].

VI. CONCLUSIONS.

The resistance and superconducting critical current of stan-
dard NbN HEB devices in normal atmospherewithout pas-
sivation layer show a severe deterioration over a period of
about one year. Based on this data, a practical definition
for the lifetime is established which equals the duration at
which theR300K has increased by 15%. Using this definition
we find that standard deviceswithout passivation layer have
a lifetime of about half a year, which is insufficient for
(space) applications. In contrast, devices with a 500nm thick
SiOx passivation layer have prolonged lifetime in atmosphere
to more than one year. The advantage of introducing the
passivation is further confirmed by accelerated lifetime tests.
The deviceswith the passivation layer show lifetimes at least
a factor of two longer than thosewithout.
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