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Abstract— This work presents an aging investigation of NbN
HEB mixers in usual lab conditions and also in high temperature
and high relative humidity environment. A variety of devices have
been fabricated using different combinations of resist (SAL), Si,
SiO2 and SiN single and multi-layer for bolometer protection.
In the accelerated aging tests the degradation is monitored by
measuring the DC resistance of the devices during the test. The
results show that using multi-layer protection increases the device
lifetime significantly.

I. I NTRODUCTION

NbN HEB mixers are to be used for band 6 low (1.410-
1.700 THz) and band 6 high (1.700-1.920 THz) of the HIFI
instrument (Heterodyne Instrument for Far-Infrared) [1] on the
Herschel Space Observatory [2] due to launch 2007. This will
be the first time that HEB mixers are used on a space mission.
The double side band receiver noise temperature using these
mixers are below 1000 K with 5-6 GHz IF bandwidth and
they require less than 500 nW of local oscillator power [3].

Since the assembling of the flight mixer units is now in
progress, they will be stored for about two years before the
launch. This raises questions concerning the degradation of
the mixer chips during this period. This work presents our
attempts to estimate the HEB lifetime with different protection
layers by comparing the accelerated aging test results in high
temperature and high relative humidity with the available data
concerning degradation of the devices in usual lab conditions.
An independent similar investigation is presented in [4]. Here,
a variety of devices have been fabricated using different com-
binations of Si, SiO2, SiN and resist multi-layers for bolometer
protection. Some of these devices are stored in ordinary lab
environment and their resistance and the critical current have
been measured regularly, in some cases for a period of two
years. In the accelerated aging tests the resistance of devices
are monitored while exposed to high temperature and high
relative humidity. The increase of resistance and decrease of
critical current are the measures of device degradation.

II. D EVICE FABRICATION

The device fabrication is done by several consecutive elec-
tron beam lithography steps followed by metallization and
lift off, where small contact pads, antenna and the large

Fig. 1. HEB integrated with double slot antenna for 1.6 THz

contact pads are patterned. 5 nm Ti followed by 80 nm of
Au is deposited for small contact pads. The antenna and large
pads are made from 5 nm of Ti and 200 nm Au. Then a
protection layer is defined over the bolometer bridge by one
more lithography step. This is to protect the NbN film in the
bolometer bridge during the ion milling. In the last step the
NbN is etched away using Ar ion milling from the whole
wafer except from the bolometer bridge and under the antenna
and pads. Figure 1 shows the SEM picture of a bolometer
integrated with double slot antenna for 1.6 THz. A variety
of devices have been fabricated using different combinations
of Si, SiO2, SiN and resist (SAL) multi-layer for bolometer
protection. The shapes and the thicknesses of these layers are
illustrated in figures 2 and 3. The resist (SAL) is a negative
resist and the protection layer is defined by the e-beam writing.
The Si and SiN layers are made by magnetron sputtering
and the SiO2 layer is deposited using e-beam evaporation. In
both cases the bolometer protections are formed using lift off
technique. The first protection layers is in rectangular shape
and covers the bolometer bridge together with parts of the
small contact pads. The second and the third protection layers
are in circles which cover the whole center part of the device.

III. D EVICE DEGRADATION IN LAB CONDITION

The HEB devices degrade by time. The degradation appears
as increase of resistance and decrease of critical current.
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Fig. 2. Protection layers over the bolometer bridge

A number of devices have been stored under ordinary lab
conditions in air (around 20◦C and 30% RH). The resistance
and critical current of these devices have been measured
periodically which is summarized in table I.

Although these data show the tendency for the Si+Si double
layer protection to be more resistant against aging, the result
is not yet conclusive and the accelerated aging tests seems
necessary.

IV. RECEIVER NOISE TEMPERATURE AND MIXER

DEGRADATION

In order to see the degradation effect on the mixer perfor-
mance, receiver noise temperature have been measured two
times using the same mixer chip. The mixer was fabricated in
February 2004 and kept in desiccator until April 2004 when it
was mounted in the HIFI mixer unit and measured for the first
time. Then it was stored on the shelf at about 20◦C and 30%
RH until August 2004, when the second test was performed.
During this time the device resistance increased by 5% and the

Fig. 3. Variety of HEB protection layers and their thicknesses

TABLE I

HEB DEGRADATION IN ROOM TEMPERATURE AND30% RH

Protection Time (Month) dR/R (%) dI/I (%)

SAL 12 20 30-50

SAL 16 30 50

SAL 24 50 60-70

SAL+SiO2 7 3-13 5-12

SiO2 7 15 8

Si+Si 6 2-5 6-9

measured critical current decreased by 10%. Figure 4 shows
the double side band receiver noise temperature in these two
occasions together with the HIFI specification limit. As we see,
the mixer performance was not much affected by this level
of degradation and the receiver noise temperature is within
acceptable limit. The device used in this test has a resist (SAL)
protection layer for the bolometer.

V. VACUUM BAKING TEST

141 hours of vacuum baking was done with 3 devices
with resist (SAL) protection. The pressure of10−4 mbar was
achieved with 2 hours of pre-pumping and temperature was
kept constant at 90◦C on the hotplate where devices were
placed. As it is shown in table II, the resistance and the
critical current of these devices did not changed significantly
during the test, which means that the heating effect on device
degradation in the absence of air is negligible and not affected
by temperature.

VI. A CCELERATEDAGING TEST AT 85◦C-85% RH

Several devices with a variety of bolometer protection
layers were kept in 85◦C-85% RH for over 100 hours. The
resistance of these devices was monitored during this time.
Figure 5 summarizes the result of these tests. The devices with
resist (SAL) protection have the shortest lifetime. Although
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Fig. 4. DSB receiver noise temperature measured twice with about 5 month
time difference using the same HEB chip stored in about 20◦C and 30% RH
during this time.
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TABLE II

VACUUM BAKING TEST AT 90◦C FOR 141 HOURS

Device R (Ω) R (Ω) IC (µA) IC (µA)

ID before after before after

A 87 85 134 132

B 95 93 140 137

C 93 92.5 130 118

there is a diversity in their performance, they all severely
degrade within first 10 hours and before all the other type
of devices. Adding an extra layer of SiO2 improves the life
time significantly. There is a clear difference in lifetime when
the SAL protection is replaced by Si or SiO2. However, the
major improvement occurs when double layer Si+Si or triple
layer SiO2+SiO2+SiN is used which increase the lifetime of
HEB by almost an order of magnitude.

A number of devices were periodically exposed to 10 hour
of 20◦C-20% RH following by 10 hours of 85◦C-85% RH for
about 120 hours of total time. As is shown in figure 6, the
devices with SAL protection were degraded faster than the
devices with Si+Si double protection layer. We can also see
that the degradation stops (constant resistance) during 20◦C-
20% RH and starts again when at 85◦C-85% RH.

VII. A CCELERATEDAGING TEST AT 65◦C-85% RH

In order to see the temperature effect on the degradation of
HEB, a number of devices with SAL and Si+Si protection were
exposed to 65◦C-85% RH for over 100 hours. As is shown
in figure 7, the devices with SAL protection were affected
much faster that the devices with Si+Si double protection layer.
Comparing this result with the outcome of the 85◦C-85% RH
(figure 5), one can see that the degradation in 65◦C happens
considerably slower than in 85◦C.
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Fig. 5. Accelerated aging test at 85◦C-85% RH
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Fig. 6. Periodical aging test: 10 hour of 20◦C-20% RH following by 10
hours of 85◦C-85% RH repeated for about 120 hours.

VIII. A CCELERATEDAGING TEST AT 50◦C-85% RH

Only devices with resist (SAL) protection were used in
a 50◦C-85% RH aging test. The reason was that they were
expected to have shorter lifetime and therefore more practical
to test at lower temperature. Using other devices with double
or triple layer protection in this test requires very long testing
time which is cumbersome. As is shown in figure 8, the
devices are degraded in a much slower pace compared with
degradation at 65◦C and 85◦C. The diversity of degradation
rate in here is similar to what we see in figure 5 for SAL
devices.

IX. D ISCUSSIONS ANDCONCLUSION

The 130 nm thick resist (SAL) used traditionally as top layer
does not provide good protection against aging. Adding a 200
nm layer of SiO2 on top of the SAL provides a somewhat
better protection layer. Replacing the SAL by Si or SiO2

increases the HEB lifetime dramatically. Our measured results
show that Si-Si double layer or SiO2-SiO2-SiN triple layer
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Fig. 7. Accelerated aging test at 65◦C-85% RH
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Fig. 8. Accelerated aging test at 50◦C-85% RH

provides the best protection layer compared with the others
mentioned above.

Baking test (90◦C in vacuum) did not show any degradation
of devices. This means that the main cause of degradation
is the humidity and the process is accelerated at higher
temperature.

There is a spread of data for the lifetime of similar devices.
As it is shown in figures 9 not all devices with SAL protection
behave exactly the same. It is also observed that 1 out
of 9 tested devices with Si+Si protection and very similar
characteristics surprisingly had a short lifetime (see figure 10).
This means that although statistically there is a clear advantage
in using multi-protection layers, we cannot assure that every
single device of this type will have a long lifetime. Therefore,
it is necessary to develop a method to select the flight mixers
in a way to be sure about their lifetime.

Comparing the resistance of devices under 85◦C-85% RH
test with the similar devices degraded in usual lab condition,
one can estimate that every hour of accelerated aging test
corresponds to about 1 to 1.5 month of shelf time storage.
Based on this result for devices with double or triple protection
layers, it takes well above 2 years time until the degradation
affects the mixer performance. This means that there is no
problem with the aging of HEBs during the assembling time
of the Herschel Space Observatory.
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